Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics

An Erratum to this article was published on 21 May 2009


Brine fluids that upwell from deep, hot reservoirs below the sea bed supply the sea floor with energy-rich substrates and nutrients that are used by diverse microbial ecosystems. Contemporary hypersaline environments formed by brine seeps may provide insights into the metabolism and distribution of microorganisms on the early Earth1 or on extraterrestrial bodies2. Here we use geochemical and genetic analyses to characterize microbial community composition and metabolism in two seafloor brines in the Gulf of Mexico: an active mud volcano and a quiescent brine pool. Both brine environments are anoxic and hypersaline. However, rates of sulphate reduction and acetate production are much higher in the brine pool, whereas the mud volcano supports much higher rates of methane production. We find no evidence of anaerobic oxidation of methane, despite high methane fluxes at both sites. We conclude that the contrasting microbial community compositions and metabolisms are linked to differences in dissolved-organic-matter input from the deep subsurface and different fluid advection rates between the two sites.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematic diagram illustrating the differences in fluid flow, stratification and surficial chemosynthetic communities between brine pools and mud volcanoes.
Figure 2: Depth profiles of microbial abundance, geochemistry, activity and energetics in the brine pool and mud volcano.
Figure 3: Phylogeny of deltaproteobacteria and epsilonproteobacteria 16S rRNA from the brine pool (GC233) and the mud volcano (GB425) sites.
Figure 4: Neighbour-joining tree of translated mcrA sequences with 1,000 repetitions of parsimony-based bootstrap support listed for all nodes with greater than 55%.


  1. Dundas, I. Was the environment for primordial life hypersaline? Extremophiles 2, 375–377 (1998).

    Article  Google Scholar 

  2. Mancinelli, R. L., Fahlen, T. F., Landheim, R. & Klovstad, M. R. Brines and evaporates: Analogs for Martian Life. Adv. Space Res. 33, 1244–1246 (2004).

    Article  Google Scholar 

  3. MacDonald, I. R. et al. Pulsed oil discharge from a mud volcano. Geology 28, 907–910 (2000).

    Article  Google Scholar 

  4. Eder, M. et al. Prokaryotic phylogenetic diversity and corresponding geochemical data of the brine-seawater interface of the Shaban Deep. Environ. Microbiol. 4, 758–763 (2002).

    Article  Google Scholar 

  5. van der Wielen, P. W. J. J. et al. The enigma of prokaryotic life in deep hypersaline anoxic basins. Science 307, 121–123 (2005).

    Article  Google Scholar 

  6. Daffonchio, D. et al. Stratified prokaryotic network in the oxic–anoxic transition of a deep-sea halocline. Nature 440, 203–207 (2006).

    Article  Google Scholar 

  7. MacDonald, I. R. et al. Chemosynthetic mussels at a brine-filled pockmark in the northern Gulf of Mexico. Science 248, 1096–1099 (1990).

    Article  Google Scholar 

  8. Joye, S. B., MacDonald, I. R., Montoya, J. P. & Peccini, M. Geophysical and geochemical signatures of Gulf of Mexico seafloor brines. Biogeosciences 2, 295–309 (2005).

    Article  Google Scholar 

  9. Oren, A. Bioenergetic aspects of halophilism. Microbiol. Molec. Biol. Rev. 63, 334–348 (1999).

    Google Scholar 

  10. Orcutt, B. et al. Molecular biogeochemistry of sulphate reduction, methanogenesis and the anaerobic oxidation of methane at Gulf of Mexico methane seeps. Geochim. Cosmochim. Acta 69, 4267–4281 (2005).

    Article  Google Scholar 

  11. De Beer, D. et al. In situ fluxes and zonation of microbial activity in surface sediments of the Haakon Mosby mud volcano. Limnol. Oceanogr. 51, 1315–1331 (2006).

    Article  Google Scholar 

  12. Kelley, D. S et al. A serpentinite-hosted ecosystem: The lost city hydrothermal field. Science 307, 1428–1434 (2005).

    Article  Google Scholar 

  13. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Acetogenesis from CO2 in an anoxic marine sediment. Limnol. Oceanogr. 44, 662–667 (1999).

    Article  Google Scholar 

  14. Hoehler, T. M., Bebout, B. M. & Des Marais, D. J. The role of microbial mats in the production of reduced gases on the early Earth. Nature 412, 324–327 (2001).

    Article  Google Scholar 

  15. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Thermodynamic controls on hydrogen concentrations in anoxic sediments. Geochim. Cosmochim. Acta 62, 1745–1756 (1998).

    Article  Google Scholar 

  16. Gelwicks, J. T., Risatti, J. B. & Hayes, J. M. Carbon isotope effects associated with autotrophic acetogenesis. Org. Geochem. 14, 441–446 (1989).

    Article  Google Scholar 

  17. Inagaki, F. et al. Biogeographical distribution and diversity of microbes in methane-hydrate bearing deep marine sediments on the Pacific Ocean Margin. Proc. Natl Acad. Sci. USA. 103, 2815–2820 (2006).

    Article  Google Scholar 

  18. Drake, H. L., Küsel, K. & Matthies, C. in The Prokaryotes 3rd edn Vol. 2 (eds Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.-H. & Sttakebrandt, E.) 354–420 (Springer, 2007).

    Google Scholar 

  19. Hoehler, T. M., Alperin, M. J., Albert, D. B. & Martens, C. S. Field and laboratory studies of methane oxidation in anoxic marine sediment—evidence for a methanogen-sulfate reducer consortium. Glob. Biogeochem. Cycles 8, 451–463 (1994).

    Article  Google Scholar 

  20. Biddle, J.F. et al. Heterotrophic archaea dominate sedimentary subsurface ecosystems off Peru. Proc. Natl Acad. Sci. USA 103, 3846–3851 (2006).

    Article  Google Scholar 

  21. Amann, R. I. et al. Molecular and microscopic identification of sulfate-reducing bacteria in multispecies biofilms. Appl. Environ. Microbiol. 58, 614–623 (1992).

    Google Scholar 

  22. Teske, A. et al. Sulfate-reducing bacteria and their activities in cyanobacterial mats of Solar Lake (Sinai, Egypt). Appl. Environ. Microbiol. 64, 2943–2951 (1998).

    Google Scholar 

  23. Muyzer, G. et al. Phylogenetic relationships of Thiomicrospira species and their identification in deep-sea hydrothermal vent samples by denaturing gradient gel electrophoresis of 16S rDNA fragments. Arch. Microbiol. 164, 165–172 (1995).

    Article  Google Scholar 

  24. Wagner, M. et al. Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J. Bacteriol. 180, 2975–2982 (1998).

    Google Scholar 

  25. Lever, M. A. Anaerobic Carbon Cycling Pathways in the Deep Subseafloor Investigated via Functional Genes, Chemical Gradients, Stable Carbon Isotopes, and Thermodynamic Calculations. PhD Dissertation, Univ. North Carolina at Chapel Hill (2008).

  26. Dhillon, A. et al. Molecular characterization of sulfate-reducing bacteria in the Guaymas Basin. Appl. Environ. Microbiol. 69, 2765–2772 (2003).

    Article  Google Scholar 

  27. Heuer, V. et al. Online δ13C analysis of volatile fatty acids in sediment/porewater systems by liquid chromatography-isotope ratio-mass spectrometry. Limnol. Oceanogr. Meth. 4, 346–357 (2006).

    Article  Google Scholar 

  28. Anderson, G. M. Thermodynamics of Natural Systems 648 (Cambridge Univ. Press, 2005).

    Book  Google Scholar 

  29. McCutcheon, S. C., Martin, J. L. & Barnwell, T. O. in Handbook of Hydrology (ed. Maidment, D. R.) 11.3–11.73 (McGraw-Hill, 1993).

    Google Scholar 

  30. Gustafsson, J. P. Visual Minteq v. 2.50, revision 31/5/2006. Kungliga Tekniska Högskolan (2006); available at <>.

Download references


This research was supported by the US National Science Foundation Life in Extreme Environments and Microbial Observatories programs; the National Oceanographic and Atmospheric Administration National Undersea Research Program; the Department of Energy; the American Chemical Society Petroleum Research Fund; the Environmental Protection Agency; the NASA Astrobiology Institute; and the Deutsche Forschungsgemeinschaft. We thank members of the LExEn 2002 shipboard scientific party and the ship and submersible crews from Harbor Branch Oceanographic Institution for help collecting and processing samples; Mitch Sogin and the Bay Paul Center at the Marine Biological Laboratory for efficient sequencing support; Basil Blake for painting Fig. 1; and A. Boetius, N. Finke and B. Gilhooly for providing comments that improved this manuscript.

Author information

Authors and Affiliations



S.B.J., V.A.S., I.R.M. and J.P.M. conceived the experiment and carried it out; K.-U.H. and M.E. completed the carbon isotopic analyses; A.P.T., K.G.L., M.A.L. and B.N.O. completed the molecular biological analyses; C.D.M. completed the thermodynamic calculations; S.B.J. wrote the paper and all authors provided editorial comments.

Corresponding authors

Correspondence to Samantha B. Joye, Beth! N. Orcutt or Mark A. Lever.

Supplementary information

Supplementary Table S1

Supplementary Information (PDF 816 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Joye, S., Samarkin, V., Orcutt, B. et al. Metabolic variability in seafloor brines revealed by carbon and sulphur dynamics. Nature Geosci 2, 349–354 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing