Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Mid-ocean-ridge basalt of Indian type in the northwest Pacific Ocean basin


Magmatism associated with the Izu–Bonin arc in the Pacific Ocean initiated around 50 million years (Myr) ago, when the Pacific plate began subducting beneath the Philippine Sea plate. The compositions of volcanic rocks that have formed in the arc since about 42 Myr ago are distinctly different from those that formed earlier1,2. Here we use new and previously published lead isotope data to determine the sources of the Izu–Bonin magmas. Although typical Pacific Ocean crust now flanks the Izu–Bonin trench3,4,5, our results suggest that since 42 Myr ago, arc magmas have incorporated lead from subducted ocean crust that is compositionally distinct from Pacific Ocean crust but similar to that found in the Indian Ocean region. Yet, no such Indian-type ocean crust has been found in the northwestern Pacific so far. On the basis of plate tectonic reconstructions, we infer that such crust—probably generated by the now-extinct Izanaghi–Pacific spreading centre—must have been subducting at the Izu–Bonin trench until a few million years ago. The upper mantle that melts to generate such crust is different from that thought to underlie much of the Pacific Ocean basin. Because the Izanaghi–Pacific spreading centre apparently tapped into Indian-type mantle, our results suggest that this mantle domain extends well beyond its currently accepted eastern boundary along northwest Pacific subduction zones.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Figure 1: Northwest Pacific base map from GeoMapApp.
Figure 2: Temporal variability of Izu–Bonin arc magmas.
Figure 3: Pb isotope systematics.
Figure 4: Mixing systematics of Izu-Bonin–Mariana (IBM) arc and backarc magmas.


  1. Pearce, J. A., Kempton, P. D., Nowell, G. M. & Noble, S. R. Hf–Nd element and isotope perspective on the nature and provenance of mantle and subduction zone components in Western Pacific arc-basin systems. J. Petrol. 40, 1579–1611 (1999).

    Article  Google Scholar 

  2. Ishizuka, O. et al. Early stages in the evolution of Izu–Bonin arc volcanism: New age, chemical, and isotopic constraints. Earth Planet. Sci. Lett. 250, 385–401 (2006).

    Article  Google Scholar 

  3. Janney, P. & Castillo, P. Geochemistry of Mesozoic Pacific mid-ocean ridge basalt: Constraints on melt generation and the evolution of the Pacific upper mantle. J. Geophys. Res. 102, 5207–5229 (1997).

    Article  Google Scholar 

  4. Hauff, F., Hoernle, K. A. & Schmidt, A. The Sr–Nd–Pb composition of Mesozoic Pacific oceanic crust (Site 1149 and 801, ODP Leg 185): Implications for alteration of ocean crust and the input into the Izu–Bonin–Mariana subduction system. Geochem. Geophys. Geosys. 4, 8913 (2003).

    Article  Google Scholar 

  5. Mahoney, J. J., Duncan, R. A., Tejada, M. L. G., Sager, W. W. & Bralower, T. J. Jurassic–Cretaceous boundary age and mid-ocean ridge-type mantle source for Shatsky Rise. Geology 33, 185–188 (2005).

    Article  Google Scholar 

  6. Miller, D. M., Goldstein, S. L. & Langmuir, C. H. Cerium/lead and lead isotope ratios in arc magmas and the enrichment of lead in the continents. Nature 368, 514–520 (1994).

    Article  Google Scholar 

  7. Ludden, J. N., Plank, T., Larson, R. & Escutia, C. in Proc. Ocean Drilling Program, Sci. Res. (eds Ludden, J. N., Plank, T. & Escutia, C.) (Ocean Drilling Program, 2006).

    Google Scholar 

  8. Taylor, R. N. & Nesbitt, R. W. Isotopic characteristics of subduction fluids in an intra-oceanic setting, Izu-Bonin-Arc, Japan. Earth Planet. Sci. Lett. 164, 79–98 (1998).

    Article  Google Scholar 

  9. Straub, S. M., Layne, G. D., Schmidt, A. & Langmuir, C. H. Volcanic glasses at the Izu arc volcanic front: New perspectives on fluid and sediment melt recycling in subduction zones. Geochem. Geophys. Geosys. 5, Q01007 (2004).

    Article  Google Scholar 

  10. Bryant, C. J., Arculus, R. J. & Eggins, S. M. The geochemical evolution of the Izu–Bonin arc system: A perspective from tephras recovered by deep-sea drilling. Geochem. Geophys. Geosys. 4, 1094 (2003).

    Article  Google Scholar 

  11. Straub, S. M. The evolution of the Izu Bonin–Mariana volcanic arcs (NW Pacific) in terms of major elements. Geochem. Geophys. Geosys. 4, 1018 (2003).

    Google Scholar 

  12. Hart, S. R. The DUPAL anomaly: A large scale isotopic anomaly in the southern hemisphere. Nature 309, 753–756 (1984).

    Article  Google Scholar 

  13. Class, C., Miller, D. M., Goldstein, S. L. & Langmuir, C. H. Distinguishing melt and fluid subduction components in Umnak volcanics, Aleutian Arc. Geochem. Geophys. Geosys. 1, 1999GC000010 (2000).

    Article  Google Scholar 

  14. Pearce, J. A., Baker, P. E., Harvey, P. K. & Luff, I. W. Geochemical evidence for subduction fluxes, mantle melting and fractional crystallization beneath the South Sandwich Island Arc. J. Petrol. 36, 1073–1109 (1995a).

    Article  Google Scholar 

  15. Niu, Y. & Batiza, R. Trace element evidence from seamounts for recycled oceanic crust in the Eastern Pacific mantle. Earth Planet. Sci. Lett. 148, 471–483 (1997).

    Article  Google Scholar 

  16. Plank, T., Kelley, K. A., Murray, R. M. & Stern, L. Q. The chemical composition of subducting sediment at the Izu–Bonin Trench. Geochem. Geophys. Geosys. 8, Q04I16 (2007).

    Article  Google Scholar 

  17. Hall, R. Cenozoic geological and plate tectonics evolution of SE Asia and the SW Pacific: Computer-based reconstruction, model and animations. J. Asian Earth Sci. 20, 353–431 (2002).

    Article  Google Scholar 

  18. Kelley, K. A., Plank, T., Ludden, J. & Staudigel, H. Composition of altered oceanic crust at ODP Sites 801 and 1149. Geochem. Geophys. Geosys. 4, 8910 (2003).

    Article  Google Scholar 

  19. Hickey-Vargas, R. Origin of the Indian Ocean-type isotopic signature in basalts from Philippine Sea plate spreading centers: An assessment of local versus large-scale processes. J. Geophys. Res. 103, 20963–20979 (1998).

    Article  Google Scholar 

  20. Hochstaedter, A. G. et al. Across-arc geochemical trends in the Izu–Bonin arc: Contributions from the subducting slab. Geochem. Geophys. Geosys. 2, 2000GC000105 (2001).

    Article  Google Scholar 

  21. Xu, J. F. & Castillo, P. R. Geochemical and Nd–Pb isotopic characteristics of the Tethyan asthenosphere: Implications for the origin of the Indian Ocean mantle domain. Tectonophysics 393, 9–27 (2004).

    Article  Google Scholar 

  22. Nakanishi, M., Tamaki, K. & Kobayashi, K. Mesozoic magnetic anomaly lineations and seafloor spreading history of the northwestern pacific. J. Geophys. Res. 94, 15437–15462 (1989).

    Article  Google Scholar 

  23. Mueller, R. D., Sdrolias, M., Gaina, C., Steinberger, B. & Heine, C. Long-term sea-level fluctuations driven by ocean basin dynamics. Science 319, 1357–1362 (2008).

    Article  Google Scholar 

  24. Whittaker, J. M. et al. Major Australian–Antarctic plate reorganization at the Hawaiian-Emperor bend time. Science 318, 83–86 (2007).

    Article  Google Scholar 

  25. Janney, P. & Castillo, P. Isotope geochemistry of the Darwin Rise seamounts and the nature of long-term mantle dynamics beneath the south central Pacific. J. Geophys. Res. 104, 10571–10589 (1999).

    Article  Google Scholar 

  26. Koppers, A. A. P., Staudigel, H., Pringle, M. S. & Wijbrans, J. R. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? Geochem. Geophys. Geosys. 4, 1089 (2003a).

    Article  Google Scholar 

  27. Fountain, J. C., Jacobi, R. D. & Fahey, T. J. in Init Repts DSDP 86 (eds Heath, G. R. et al.) 691–697 (US Govt Printing Office, 1985).

    Google Scholar 

  28. Renkin, M. L. & Sclater, J. G. Depth and age in the North Pacific. J. Geophys. Res. 93, 2919–2935 (1988).

    Article  Google Scholar 

  29. GeoROC, Geochemistry of Rocks of the Oceans and Continents. <> (2009).

  30. PetDB. Information System for Geochemical Data of Igneous and Metamorphic Rocks from the Ocean Floor. <> (2009).

Download references


The tephra samples have been obtained from the Gulf Coast Repository in College Station, Texas. Louise Bolge, Ofelia Pérez-Arvizu and Nathan Rollins are thanked for help with analyses. The study was financially supported by the US National Science Foundation (OCE 04-53515) and the ‘Deutsche Forschungsgemeinschaft’ (STR 441/4 and STR 441/6).

Author information

Authors and Affiliations



All authors contributed to data interpretation. S.M.S. selected the samples, contributed to major- and trace-element analyses, conceived the model and wrote the initial manuscript. S.L.G. and S.M.S. worked on revisions. C.C. and A.S. carried out the isotope analyses.

Corresponding author

Correspondence to Susanne M. Straub.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1277 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Straub, S., Goldstein, S., Class, C. et al. Mid-ocean-ridge basalt of Indian type in the northwest Pacific Ocean basin. Nature Geosci 2, 286–289 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing