Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Primary haematite formation in an oxygenated sea 3.46 billion years ago

Abstract

The timing of the origin of photosynthesis on the early Earth is greatly debated. It is generally agreed, on the basis of the presence of biological molecules found in shales from the Hamersley Basin, Australia, that oxygenic photosynthesis had evolved 2.7 billion years (Gyr) ago. However, whether photosynthesis occurred before this time remains controversial. Here we report primary haematite crystals and associated minerals within the marine sedimentary rocks preserved in a jasper formation of the Pilbara Craton, Australia, which we interpret as evidence for the formation of these rocks in an oxygenated water body 3.46 Gyr ago. We suggest that these haematite crystals formed at temperatures greater than 60 C from locally discharged hydrothermal fluids rich in ferrous iron. The crystals precipitated when the fluids rapidly mixed with overlying oxygenated sea water, at depths greater than 200 m. As our findings imply the existence of noticeable quantities of molecular oxygen, we propose that organisms capable of oxygenic photosynthesis evolved more than 700 million years earlier than previously recognized, resulting in the oxygenation of at least some intermediate and deep ocean regions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Drilling of the MBC at ABDP Site 1, 4 km south of Marble Bar, Western Australia.
Figure 2: Vertical zonation in the MBC at ABDP Site 1.
Figure 3: A photomicrograph (under reflected and transmitted light) of a thin section of the Marble Bar jasper.
Figure 4: TEM images of haematite crystals.
Figure 5: Scanning electron microscope images of haematite, magnetite and siderite crystals in the Marble Bar jasper samples from Zone IV.
Figure 6: Haematite inclusions in siderite crystals.

Similar content being viewed by others

References

  1. Schopf, W. J. Microfossils of the Early Archean Apex chert: New evidence of the antiquity of life. Science 260, 640–646 (1993).

    Article  Google Scholar 

  2. Brasier, M. D. et al. Questioning the evidence for Earth’s oldest fossils. Nature 416, 76–81 (2002).

    Article  Google Scholar 

  3. Schopf, J. W., Kudryavtsev, A. B., Agresti, D. V., Wdowiak, T. J. & Czaja, A. D. Laser-Raman imagery of Earth’s earliest fossils. Nature 416, 73–76 (2002).

    Article  Google Scholar 

  4. Ohmoto, H. et al. Biosignatures in ancient rocks: A summary of discussions at field workshop on biosignatures in ancient rocks. Astrobiology 8, 883–907 (2008).

    Article  Google Scholar 

  5. Grotzinger, J. P. & Rothman, D. H. An abiotic model for stromatolite morphogenesis. Nature 383, 423–425 (1996).

    Article  Google Scholar 

  6. Allwood, A. C., Walter, M. R., Kamber, B. S., Marchall, C. P. & Burch, I. W. Stromatolite reef from the Early Archaean era of Australia. Nature 441, 714–718 (2006).

    Article  Google Scholar 

  7. Brocks, J. J., Logan, G. A., Buick, R. & Summons, R. E. Archean molecular fossils and the early rise of eukaryotes. Science 285, 1033–1036 (1999).

    Article  Google Scholar 

  8. Konhauser, K. O. et al. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet. Sci. Lett. 258, 87–100 (2007).

    Article  Google Scholar 

  9. Garcia-Pitchel, F. & Castenholz, R. W. Microbial Mats 77–84 (NATO ASI Series, Springer, 1994).

    Book  Google Scholar 

  10. Head, J. W. III & Wilson, L. Deep submarine pyroclastic eruptions: Theory and predicted landforms and deposits. J. Volcanol. Geotherm. Res. 121, 155–193 (2003).

    Article  Google Scholar 

  11. Bevacqua, D. C., Watanabe, Y. & Ohmoto, H. Origin of hematite in the 3.46 Gyr Towers formation. Astrobiology 6, 230 (2006).

    Google Scholar 

  12. Orberger, B. et al. Processes on the Early Earth Vol. 405, 133–156 (Geol. Soc. Am. Spec. Paper, Geological Society of America, 2006).

    Book  Google Scholar 

  13. Kato, Y. & Nakamura, K. Origin and global tectonic significance of Early Archean cherts from the Marble Bar greenstone belt, Pilbara Craton, Western Australia. Precambrian Res. 125, 191–243 (2003).

    Article  Google Scholar 

  14. van den Boom, S. H. J. M., van Bergen, M. J., Nijman, W. & Vroon, P. Z. Dual role of seawater and hydrothermal fluids in Early Archean chert formation: Evidence from silicon isotopes. Geology 35, 939–942 (2007).

    Article  Google Scholar 

  15. Ohmoto, H. et al. in Evolution of Early Earth’s Atmosphere, Hydrosphere, and Biosphere—Constraints from Ore Deposits. Vol. 198 (eds Kesler, S. E. & Ohmoto, H.) 291–331 (Geol. Soc. Am. Memoir, Geological Society of America, 2006).

    Book  Google Scholar 

  16. Trendall, A. F. & Blockley, J. G. The Iron Formations of the Precambrian Hamersley Group Western Australia Vol. 119 (Geol. Surv. W. Aus. Bull., 1970).

    Google Scholar 

  17. Ahn, J. H. & Buseck, P. R. Hematite nanospheres of possible colloidal origin from a Precambrian banded iron formation. Science 250, 111–113 (1990).

    Article  Google Scholar 

  18. Trolard, F. & Tardy, Y. The stabilities of gibbsite, boehmite, aluminous goethites and aluminous hematites in bauxites, ferricretes and laterites as a function of water activity, temperature and particle size. Geochim. Cosmochim. Acta 51, 945–957 (1987).

    Article  Google Scholar 

  19. Cornell, R. M. & Schwertmann, U. The Iron Oxides 2nd edn (Wiley–VCH, 2003).

    Book  Google Scholar 

  20. Postma, D. Pyrite and siderite oxidation in swamp sediments. Eur. J. Soil Sci. 34, 163–182 (1983).

    Article  Google Scholar 

  21. Stumm, W. & Morgan, J. J. Aquatic Chemistry—Chemical Equilibria and Rates in Natural Waters 3rd edn (Wiley, 1996).

    Google Scholar 

  22. Ohmoto, H., Watanabe, Y. & Kumazawa, K. Evidence from massive siderite beds for a CO2-rich atmosphere before 1.8 billion years ago. Nature 429, 395–399 (2004).

    Article  Google Scholar 

  23. Ohmoto, H. Non-redox transformations of magnetite-hematite in hydrothermal systems. Econ. Geol. 98, 157–161 (2003).

    Article  Google Scholar 

  24. Otake, T., Wesolowski, D. J., Anovitz, L. A., Allard, L. F. & Ohmoto, H. Experimental evidence for non-redox transformations between magnetite and hematite under H2-rich hydrothermal conditions. Earth Planet. Sci. Lett. 257, 60–70 (2007).

    Article  Google Scholar 

  25. Drever, J. I. The Geochemistry of Natural Waters: Surface and Groundwater Environments 2nd edn (Prentice Hall, 1988).

    Google Scholar 

  26. Kato, Y., Yamaguchi, K. E. & Ohmoto, H. in Evolution of the Atmosphere, Hydrosphere, and Biosphere on Early Earth: Constraints from Ore Deposits Vol. 198 (eds Kesler, S. E. & Ohmoto, H.) 269–289 (Geol. Soc. Am. Memoir, Geological Society of America, 2006).

    Book  Google Scholar 

  27. Rosing, M. T. & Frei, R. U-rich Archaean sea-floor sediments from Greenland—indications of >3,700 Myr oxygenic photosynthesis. Earth Planet. Sci. Lett. 217, 237–244 (2004).

    Article  Google Scholar 

  28. Kato, Y. et al. Hematite formation by oxygenated groundwater more than 2.76 billion years ago. Earth Planet. Sci. Lett. 278, 40–49 (2009).

    Article  Google Scholar 

Download references

Acknowledgements

This study was carried out under The Archaean Biosphere Drilling Project (ABDP; see Supplementary Information), which was funded largely by the NASA Astrobiology Institute to H.O., the Geological Survey of Western Australia to A.H.H., the University of Western Australia to M. Barley and the Japanese Ministry of Science, Education, Sports and Culture to M. Nedachi. A.H.H. publishes with permission of the Executive Director of the Geological Survey of Western Australia. We are grateful to B. Runnegar, R. Grymes and A. Marshall for their support of the ABDP; Y. Suganuma and D. Walizer for laboratory assistance; M. Nedachi, M. Barley, E. Altinok, K. E. Yamaguchi, Y. Kato and K. Nakamura for discussions; and P. Heaney, C. de Ronde, A. W. Rose and H. L. Barnes for valuable comments on an earlier manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Project planning was carried out by H.O., A.H.H. and M.H., sample analyses by M.H., D.C.B., Y.W., T.O. and S.U. and data analysis and writing mostly by H.O., M.H. and A.H.H. with input from D.C.B, Y.W., T.O. and S.U.

Corresponding author

Correspondence to Hiroshi Ohmoto.

Supplementary information

Supplementary Information

Supplementary Information (PDF 907 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hoashi, M., Bevacqua, D., Otake, T. et al. Primary haematite formation in an oxygenated sea 3.46 billion years ago. Nature Geosci 2, 301–306 (2009). https://doi.org/10.1038/ngeo465

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo465

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing