Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Progress Article
  • Published:

A heat-induced molecular signature in marine dissolved organic matter

Abstract

The bulk of sea water is an aqueous solution of inorganic salts and gases. However, if it was just this, life as we know it would not exist. In addition to this inorganic component, at least tens of thousands of organic molecules — collectively known as dissolved organic matter — exist in picomole amounts in each litre of sea water. Dissolved organic matter is important for aquatic food webs and, integrated over the entire volume of the world's oceans, contains roughly as much carbon as all living biota on land and in the ocean combined. Yet, the cycling of dissolved organic matter in the ocean is not well understood. Recent progress in analytical chemistry has allowed the characterization of dissolved organic matter at the molecular level in unprecedented detail, revealing that a significant proportion has been thermally altered, either in deep sediments or through combustion on land with later delivery to the sea. Thermal alteration may explain, at least in part, the resistance of oceanic dissolved organic matter to microbial decomposition.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The advancement in the molecular analysis of oceanic DOM.
Figure 2: Two examples of probable structures for thermogenic DOM in the deep ocean.
Figure 3: The distribution of thermogenic DOM in the Southern Ocean.

Similar content being viewed by others

References

  1. Pomeroy, L. R. Oceans food web, a changing paradigm. Bioscience 24, 499–504 (1974).

    Article  Google Scholar 

  2. Moore, B., Edie, E. S., Whitley, E. & Dakin, W. J. The nutrition and metabolism of marine animals in relationship to (a) dissolved organic matter and (b) particulate organic matter of seawater. Biochem. J. 6, 255–296 (1912).

    Article  Google Scholar 

  3. Kirchman, D. L., Suzuki, Y., Garside, C. & Ducklow, H. W. High turnover rates of dissolved organic-carbon during a spring phytoplankton bloom. Nature 352, 612–614 (1991).

    Article  Google Scholar 

  4. Cherrier, J., Bauer, J. E. & Druffel, E. R. M. Utilization and turnover of labile dissolved organic matter by bacterial heterotrophs in eastern North Pacific surface waters. Mar. Ecol. Prog. Ser. 139, 267–279 (1996).

    Article  Google Scholar 

  5. Bauer, J. E., Williams, P. M. & Druffel, E. R. M. 14C activity of dissolved organic carbon fractions in the central North Pacific and Sargasso Sea. Nature 357, 667–670 (1992).

    Article  Google Scholar 

  6. Druffel, E. R. M., Williams, P. M., Bauer, J. E. & Ertel, J. R. Cycling of dissolved and particulate organic matter in the open ocean. J. Geophys. Res. 97, 15639–15659 (1992).

    Article  Google Scholar 

  7. Hedges, J. I. Global biogeochemical cycles: Progress and problems. Mar. Chem. 39, 67–93 (1992).

    Article  Google Scholar 

  8. Hansell, D. A. & Carlson, C. A. Deep-ocean gradients in the concentration of dissolved organic carbon. Nature 395, 263–266 (1998).

    Article  Google Scholar 

  9. Hansell, D. A. & Carlson, C. A. Biogeochemistry of Marine Dissolved Organic Matter (Academic Press, 2002).

    Google Scholar 

  10. Ogawa, H., Amagai, Y., Koike, I., Kaiser, K. & Benner, R. Production of refractory dissolved organic matter by bacteria. Science 292, 917–920 (2001).

    Article  Google Scholar 

  11. Loh, A. N., Bauer, J. E. & Druffel, E. R. M. Variable ageing and storage of dissolved organic components in the open ocean. Nature 430, 877–881 (2004).

    Article  Google Scholar 

  12. Dittmar, T. & Koch, B. P. Thermogenic organic matter dissolved in the abyssal ocean. Mar. Chem. 102, 208–217 (2006).

    Article  Google Scholar 

  13. Yamashita, Y. & Tanoue, E. Production of bio-refractory fluorescent dissolved organic matter in the ocean interior. Nature Geosci. 1, 579–582 (2008).

    Article  Google Scholar 

  14. IPCC Climate Change 2007: The Physical Science Basis (eds Solomon, S. et al.) (Cambridge Univ. Press, 2007).

  15. Peltier, W. R., Liu, Y. & Crowleay, J. W. Snowball Earth prevention by dissolved organic carbon remineralization. Nature 450, 813–819 (2007).

    Article  Google Scholar 

  16. Ogawa, H. & Tanoue, E. Dissolved organic matter in oceanic waters. J. Oceanogr. 59, 129–147 (2003).

    Article  Google Scholar 

  17. Dittmar, T. & Kattner G. Recalcitrant dissolved organic matter in the ocean: Major contribution of small amphiphilics. Mar. Chem. 82, 115–123 (2003).

    Article  Google Scholar 

  18. Meyers-Schulte, K. J. & Hedges, J. I. Molecular evidence for a terrestrial component of organic matter dissolved in ocean water. Nature 321, 61−63 (1986).

    Article  Google Scholar 

  19. Opsahl, S. & Benner, R. Distribution and cycling of terrigenous dissolved organic matter in the ocean. Nature 396, 480–482 (1997).

    Article  Google Scholar 

  20. Keys, A., Christensen, E. H. & Krogh, A. The organic metabolism of sea water with special reference to the ultimate food cycle in the sea. Mar. Biol. Assoc. UK 20, 181–196 (1935).

    Article  Google Scholar 

  21. Kaiser, K. & Benner, R. Biochemical composition and size distribution of organic matter at the Pacific and Atlantic Time-Series Stations. Mar. Chem. 10.1016/j.marchem.2008.12.004 (in the press).

  22. Koch, B. P., Ludwichowski, K.-U., Kattner, G., Dittmar, T. & Witt, M. Advanced characterization of marine dissolved organic matter by combining reversed-phase liquid chromatography and FT-ICR-MS. Mar. Chem. 111, 233–241 (2008).

    Article  Google Scholar 

  23. Mopper, K., Stubbins, A., Ritchie, J. D., Bialk, H. M. & Hatcher, P. G. Advanced instrumental approaches for characterization of marine dissolved organic matter: Extraction techniques, mass spectrometry, and nuclear magnetic resonance spectroscopy. Chem. Rev. 107, 419–442 (2007).

    Article  Google Scholar 

  24. Reemtsma, T., These, A., Springer, A. & Linscheid, M. Differences in the molecular composition of fulvic acid size fractions detected by size-exclusion chromatography-on line Fourier transform ion cyclotron resonance (FTICR-) mass spectrometry. Water Res. 42, 63–72 (2008).

    Article  Google Scholar 

  25. Stenson, A. C. Reversed-phase chromatography fractionation tailored to mass spectral characterization of humic substances. Environ. Sci. Technol. 42, 2060–2065 (2008).

    Article  Google Scholar 

  26. Seitzinger, S. P. et al. Molecular-level chemical characterization and bioavailability of dissolved organic matter in stream water using electrospray-ionization mass spectrometry. Limnol. Oceanogr. 50, 1–12 (2005).

    Article  Google Scholar 

  27. Dittmar, T., Whitehead, K., Minor, L. & Koch, B. P. Tracing terrigenous dissolved organic matter and its photochemical decay in the ocean by using liquid chromatography / mass spectrometry. Mar. Chem. 107, 378–387 (2007).

    Article  Google Scholar 

  28. Koch, B. P., Witt, M., Engbrodt, R., Dittmar, T. & Kattner, G. Molecular formulae of marine and terrigenous dissolved organic matter detected by electrospray ionisation Fourier transform ion cyclotron resonance mass spectrometry. Geochim. Cosmochim. Acta 69, 3299–3308 (2005).

    Article  Google Scholar 

  29. Hertkorn, N. et al. Characterization of a major refractory component of marine dissolved organic matter. Geochim. Cosmochim. Acta 70, 2990–3010 (2006).

    Article  Google Scholar 

  30. Stenson, A. C., Marshall, A. G. & Cooper, W. T. Exact masses and chemical formulae of individual Suwannee River fulvic acids from ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectra. Anal. Chem. 75, 1275–1284 (2003).

    Article  Google Scholar 

  31. Koch, B. P. & Dittmar, T. From mass to structure: An aromaticity index for high-resolution mass data of natural organic matter. Rapid Commun. Mass Spectrom. 20, 926–932 (2006).

    Article  Google Scholar 

  32. Kim, S., Simpson, A. J., Kujawinski, E. B., Freitas, M. A. & Hatcher, P. G. High resolution electrospray ionization mass spectrometry and 2D solution NMR for the analysis of DOM extracted by C-18 solid phase disk. Org. Geochem. 34, 1325–1335 (2003).

    Article  Google Scholar 

  33. Ruiz-Morales, Y. & Mullins, O. C. Polycyclic aromatic hydrocarbons of asphaltenes analyzed by molecular orbital calculations with optical spectroscopy. Energ. Fuel. 21, 256–265 (2007).

    Article  Google Scholar 

  34. Czimczik, C. I. & Masiello, C. A. Controls on black carbon storage in soils. Global Biogeochem. Cycles 21, GB3005 (2007).

    Article  Google Scholar 

  35. Masiello, C. A. & Druffel, E. R. M. Black carbon in deep-sea sediments. Nature 280, 1911–1913 (1998).

    Google Scholar 

  36. Druffel, E. R. M. Comments on the importance of black carbon in the global carbon cycle. Mar. Chem. 92, 197–200 (2004).

    Article  Google Scholar 

  37. Mannino, A. & Harvey, H. R. Black carbon in estuarine and coastal ocean dissolved organic matter. Limnol. Oceanogr. 49, 735–740 (2004).

    Article  Google Scholar 

  38. Kim, S., Kaplan, L. A., Benner, R. & Hatcher, P. G. Hydrogen-deficient molecules in natural riverine water samples: Evidence for the existence of black carbon in DOM. Mar. Chem. 92, 225–234 (2004).

    Article  Google Scholar 

  39. Dittmar, T., Koch, B. P., Hertkorn, N. & Kattner, G. A simple and efficient method for the solid-phase extraction of dissolved organic matter (SPE-DOM) from seawater. Limnol. Oceanogr. Methods 6, 230–235 (2008).

    Article  Google Scholar 

  40. Dittmar, T. The molecular level determination of black carbon in marine dissolved organic matter. Org. Geochem. 39, 396–407 (2008).

    Article  Google Scholar 

  41. CLIVAR Carbon Hydrography Data Office <http://whpo.ucsd.edu/groups?id=i06>.

  42. Nizzetto, L. et al. PAHs in air and seawater along a North–South Atlantic transect: Trends, processes and possible sources. Environ. Sci. Technol. 42, 1580–1585 (2008).

    Article  Google Scholar 

  43. Broecker, W. A., Sutherland, S. & Peng, T.-H. A possible 20th-century slowdown of Southern Ocean deep water formation. Science 286, 1132–1135 (1999).

    Article  Google Scholar 

  44. Mullins, O. C., Sheu, E. Y., Hammami, A. & Marshall, A. G. Asphaltenes, Heavy Oils, and Petroleomics (Springer, 2007).

    Book  Google Scholar 

  45. Amon, R. M. W., Fitznar, H. P. & Benner, R. Linkages among the bioreactivity, chemical composition, and diagenetic state of marine dissolved organic matter. Limnol. Oceanogr. 46, 287–297 (2001).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the crew and colleagues of RV Roger Revelle for their support at sea, and K. Speer and O. Mullins for beneficial discussions. This work was financially supported by the National Oceanic and Atmospheric Administration (NOAA grant GC 05-099) and the US CLIVAR (Climate Variability and Predictability) programme.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Thorsten Dittmar or Jiyoung Paeng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dittmar, T., Paeng, J. A heat-induced molecular signature in marine dissolved organic matter. Nature Geosci 2, 175–179 (2009). https://doi.org/10.1038/ngeo440

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo440

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing