Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus


The recent marked retreat, thinning and acceleration of most of Greenland’s outlet glaciers south of 70 N has increased concerns over Greenland’s contribution to future sea level rise1,2,3,4,5. These dynamic changes seem to be parallel to the warming trend in Greenland, but the mechanisms that link climate and ice dynamics are poorly understood, and current numerical models of ice sheets do not simulate these changes realistically6,7,8. Uncertainties in the predictions of mass loss from the Greenland ice sheet have therefore been highlighted as one of the main limitations in forecasting future sea levels9. Here we present a numerical ice-flow model that reproduces the observed marked changes in Helheim Glacier, one of Greenland’s largest outlet glaciers. Our simulation shows that the ice acceleration, thinning and retreat begin at the calving terminus and then propagate upstream through dynamic coupling along the glacier. We find that these changes are unlikely to be caused by basal lubrication through surface melt propagating to the glacier bed. We conclude that tidewater outlet glaciers adjust extremely rapidly to changing boundary conditions at the calving terminus. Our results imply that the recent rates of mass loss in Greenland’s outlet glaciers are transient and should not be extrapolated into the future.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Figure 1: Observed and modelled surface elevation and velocity.
Figure 2: Response of the glacier terminus to different model perturbations.
Figure 3: Modelled response in ice flux.


  1. Rignot, E. & Kanagaratnam, P. Changes in velocity structure of the Greenland ice sheet. Science 311, 986–990 (2006).

    Article  Google Scholar 

  2. Howat, I. M., Joughin, I., Tulaczyk, S. & Gogineni, S. Rapid retreat and acceleration of Helheim Glacier, east Greenland. Geophys. Res. Lett. 32, L22502 (2005).

    Article  Google Scholar 

  3. Joughin, I., Abdalati, W. & Fahnestock, M. Large fluctuations in speed on Greenland’s Jakobhavn Isbrae glacier. Nature 432, 608–610 (2004).

    Article  Google Scholar 

  4. Stearns, L. A. & Hamilton, G. S. Rapid volume loss from two East Greenland outlet glaciers quantified using repeat stereo satellite imagery. Geophys. Res. Lett. 34, L05503 (2007).

    Article  Google Scholar 

  5. Krabill, W. et al. Greenland ice sheet: Increased coastal thinning. Geophys. Res. Lett. 31, L24402 (2004).

    Article  Google Scholar 

  6. Vaughan, D. G. & Arthern, R. Why is it so hard to predict the future of ice sheets. Science 315, 1508–1510 (2007).

    Article  Google Scholar 

  7. Alley, R. B., Clark, P. U., Huybrechts, P. & Joughin, I. Ice-sheet and sea-level change. Science 310, 456–460 (2005).

    Article  Google Scholar 

  8. Bamber, J. L., Alley, R. B. & Joughin, I. Rapid response of modern day ice sheets to external forcing. Earth Planet. Res. Lett. 257, 1–13 (2007).

    Article  Google Scholar 

  9. Solomon, S. et al. IPCC. Climate change, 2007: The Physical Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Technical Report (Cambridge Univ. Press, 2007).

    Google Scholar 

  10. Thomas, R. B. Force-perturbation analysis of recent thinning and acceleration of Jakobshavn Isbrae, Greenland. J. Glaciol. 50, 57–66 (2004).

    Article  Google Scholar 

  11. Sohn, H. G., Jezek, K. C. & Van der Veen, C. J. Jakobshavn Glacier, west Greenland: 30 years of spaceborne observations. Geophys. Res. Lett. 25, 2699–2702 (1998).

    Article  Google Scholar 

  12. Howat, I. H., Joughin, I. & Scambos, T. A. Rapid changes of ice discharge from Greenland outlet glaciers. Science 315, 1559–1561 (2007).

    Article  Google Scholar 

  13. Meier, M. F. & Post, A. Fast tidewater glaciers. J. Geophys. Res. 92, 9051–9058 (1987).

    Article  Google Scholar 

  14. Van der Veen, C. J. Tidewater calving. J. Glaciol. 42, 375–385 (1996).

    Article  Google Scholar 

  15. Vieli, A., Funk, M. & Blatter, H. Flow dynamics of tidewater glaciers: A numerical modelling approach. J. Glaciol. 47, 595–606 (2001).

    Article  Google Scholar 

  16. Zwally, H. J. et al. Surface melt-induced acceleration of Greenland ice-sheet flow. Science 297, 218–222 (2002).

    Article  Google Scholar 

  17. Parizek, B. R. & Alley, R. B. Implications of increased Greenland surface melt under global-warming scenarios: Ice sheet simulations. Quat. Sci. Rev. 23, 1013–1027 (2004).

    Article  Google Scholar 

  18. Schoof, C. Ice sheet grounding line dynamics: Steady states, stability and hysteresis. J. Geophys. Res. 112, F02528 (2007).

    Article  Google Scholar 

  19. Pfeffer, W. T. A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res. 112, F03S25 (2007).

    Article  Google Scholar 

  20. Joughin, I. et al. Ice-front variation and tidewater behaviour on Helheim and Kangerdlugssuaq Glaciers, Greenland. J. Geophys. Res. 113, F01004 (2008).

    Google Scholar 

  21. Joughin, I. et al. Seasonal speedup along the Western margin of the Greenland ice sheet. Science 320, 781–783 (2008).

    Article  Google Scholar 

  22. Holland, D. M., Thomas, R. H., De Young, B., Ribergaard, M. H. & Lyberth, B. Acceleration of Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nature Geosci. 1, 659–664 (2008).

    Article  Google Scholar 

  23. Howat, I., Joughin, I., Fahnestock, M., Smith, B. & Scambos, T. Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06: Ice dynamics and coupling to climate. J. Glaciol. 54, 646–660 (2008).

    Article  Google Scholar 

  24. Moon, T. & Joughin, I. Changes in ice front position on Greenland’s outlet glaciers from 1992 to 2007. J. Geophys. Res. 113, F02022 (2008).

    Article  Google Scholar 

  25. Price, S. F., Conway, H., Waddington, E. D. & Bindschadler, R. A. Model investigations of inland migration of fast-flowing outlet glaciers and ice streams. J. Glaciol. 54, 49–60 (2008).

    Article  Google Scholar 

  26. Joughin, I., Rignot, E., Rosanova, C. E., Luchitta, B. K. & Bohlander, J. Timing of recent accelerations of Pine Island glacier, Antarctica. Geophys. Res. Lett. 30, 1706 (2003).

    Google Scholar 

  27. Payne, A. J., Vieli, A., Shepherd, A. P., Wingham, D. J. & Rignot, E. Recent dramatic thinning of largest West Antarctic ice stream triggered by oceans. Geophys. Res. Lett. 31, L23401 (2004).

    Article  Google Scholar 

  28. Bindschadler, R. Actively surging West Antarctic ice streams and their response characteristics. Ann. Glaciol. 24, 409–414 (1997).

    Article  Google Scholar 

  29. Gregory, J. M., Huybrechts, P. & Raper, S. C. B. Threatened loss of the Greenland ice-sheet. Nature 428, 616 (2004).

    Article  Google Scholar 

  30. Joughin, I. et al. Continued evolution of Jakobshavn Isbrae following its rapid speedup. J. Geophys. Res. 113, F04006 (2008).

    Google Scholar 

Download references


This research was financially supported by the UK Natural Environmental Research Council (NERC) New-Investigators Grant NE/E001009/1. We are grateful for comments by M. Bentley and G. Leysinger Vieli, who helped to improve the manuscript.

Author information

Authors and Affiliations



F.M.N. and A.V. contributed equally to this work and were responsible for the numerical modelling. I.M.H and I.J. provided the observational data for comparison. A.V. wrote the manuscript with substantial contribution from F.M.N., I.M.H and I.J.

Corresponding authors

Correspondence to Faezeh M. Nick or Andreas Vieli.

Supplementary information

Supplementary Information, Discussion

Supplementary Information (PDF 82 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nick, F., Vieli, A., Howat, I. et al. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nature Geosci 2, 110–114 (2009).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing