Sedimentary challenge to Snowball Earth

Abstract

Evidence from the magnetic field fossilized in sedimentary rocks suggests that, more than 600 million years ago, ice occupied tropical latitudes. A popular explanation for these findings, the Snowball Earth concept, envisages a fully frozen Earth for millions of years, caused by a runaway ice–albedo feedback. A rapid, catastrophic meltback at very high levels of atmospheric carbon dioxide is thought to have ended this extreme climatic state. However, sedimentary rocks deposited during these cold intervals indicate that dynamic glaciers and ice streams continued to deliver large amounts of sediment to open oceans throughout the glacial cycle. The sedimentary evidence therefore indicates that despite the severity of glaciation, some oceans must have remained ice-free. Significant areas of open ocean have important implications for the survival and diversification of life and for the workings of the global carbon cycle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Glacial and non-glacial sedimentary rocks from the Mirbat Group of Dhofar, southern Oman.
Figure 2: Record of the 1.5-km-thick sedimentary succession of the Fiq Formation close to the village of Dabu't in Wadi Sahtan, al Jabal Akhdar, Oman (data used are from Ref. 100).
Figure 3: Glacial and non-glacial sedimentary rocks of the Fiq Formation in the Jabal Akhdar of northern Oman.
Figure 4: Correlation of two sedimentary profiles, 40 km apart, measured in the Fiq Formation of the Jabal Akhdar region of northern Oman, showing interleaving of glacial marine diamictites and non-glacial sedimentary rock types42.
Figure 5: Radiometric age constraints on Cryogenian glaciations based on data in Table 1.

References

  1. 1

    Kirschvink, J. L. in The Proterozoic Biosphere (eds Schopf, J. W. & Klein, C.) 51–52 (Cambridge Univ. Press, 1992).

    Google Scholar 

  2. 2

    Hoffman, P. F., Kaufman, A. J., Halverson, G. P. & Schrag, D. P. A Neoproterozoic snowball Earth. Science 281, 1342–1346 (1998).

    Article  Google Scholar 

  3. 3

    Hoffman, P. F. & Schrag, D. P. The Snowball Earth hypothesis: Testing the limits of global change. Terra Nova 14, 129–155 (2002).

    Article  Google Scholar 

  4. 4

    Harland, W. B. & Herod, K. N. in Ice Ages: Ancient and Modern (eds Wright, A. E. & Moseley, F.) 189–216 (Seel House, 1975).

    Google Scholar 

  5. 5

    Hambrey, M. J. & Harland, W. B. (eds) Earth's Pre-Pleistocene Glacial Record (Cambridge Univ. Press, 1981).

    Google Scholar 

  6. 6

    Embleton, B. J. J. & Williams, G. E. Low palaeolatitude of deposition for Late Precambrian periglacial varvites in South Australia: Implications for palaeoclimatology. Earth Planet. Sci. Lett. 79, 419–430 (1986).

    Article  Google Scholar 

  7. 7

    Sumner, D. Y., Kirschvink, J. L. & Runnegar, B. N. Soft-sediment palaeomagnetic field tests of late Precambrian glaciogenic sediments. Eos 68, 1251 (1987).

    Google Scholar 

  8. 8

    Schmidt, P. W. & Williams, G. E. The Neoproterozoic climate paradox: Equatorial palaeolatitude for Marinoan glaciation near sea-level in South Australia. Earth Planet. Sci. Lett. 134, 107–124 (1995).

    Article  Google Scholar 

  9. 9

    Sohl, L. E., Christie-Blick, N. & Kent, D. V. Palaeomagnetic polarity reversals in Marinoan (ca. 600 Ma) glacial deposits of Australia: Implications for the duration of low-latitude glaciations in Neoproterozoic time. Geol. Soc. Am. Bull. 111, 1120–1139 (1999).

    Article  Google Scholar 

  10. 10

    Evans, D. A. D. Stratigraphic, geochronological, and palaeomagnetic constraints upon the Neoproterozoic climatic paradox. Am. J. Sci. 300, 347–433 (2000).

    Article  Google Scholar 

  11. 11

    Van der Voo, R. The reliability of palaeomagnetic data. Tectonophysics 184, 1–9 (1990).

    Article  Google Scholar 

  12. 12

    Eyles, N. & Januszczak, N. Zipper rift: A tectonic model for Neoproterozoic glaciations during the break-up of Rodinia after 750 Ma. Earth Sci. Rev. 65, 1–73 (2004).

    Article  Google Scholar 

  13. 13

    Eyles, N. Glacio-epochs and the supercontinent cycle after 3.0 Ga: Tectonic boundary conditions for glaciation. Palaeogeogr. Palaeoclimatol. Palaeoecol. 10.1016/j.palaeo.2007.09.021 (2007).

  14. 14

    Williams, G. E. Proterozoic (pre-Ediacaran) glaciation and the high obliquity, low-latitude ice, strong seasonality (HOLIST) hypothesis: Principles and tests. Earth Sci. Rev. 87, 61–93 (2008).

    Article  Google Scholar 

  15. 15

    Kerr, R. A. An appealing Snowball Earth that's still hard to swallow. Science 287, 1734–1736 (2000).

    Article  Google Scholar 

  16. 16

    Allen, P. A. Snowball Earth on trial. Eos 87, 495 (2006); see also Eos 88, 110 (2007).

    Article  Google Scholar 

  17. 17

    Fairchild, I. J. & Kennedy, M. J. Neoproterozoic glaciation in the Earth system. J. Geol. Soc. Lond. 164, 895–921 (2007).

    Article  Google Scholar 

  18. 18

    Le Hir, G., Ramstein, G., Donnadieu, Y. & Goddéris, Y. Scenario for the evolution of atmospheric pCO2 during a snowball Earth. Geology 36, 47–50 (2008).

    Article  Google Scholar 

  19. 19

    Chandler, M. & Sohl, L. E. Climate forcings and the initiation of low-latitude ice sheets during the Neoproterozoic Varanger glacial interval. J. Geophy. Res. 105, 20,737–20,756 (2000).

    Article  Google Scholar 

  20. 20

    Hyde, W. T., Crowley, T. J., Baum, S. K. & Peltier, W. R. Neoproterozoic 'snowball Earth' simulations with a coupled climate/ice-sheet model. Nature 405, 425–429 (2000).

    Article  Google Scholar 

  21. 21

    Crowley, T. J., Hyde, W. T. & Peltier, W. R. CO2 levels required for deglaciation of a 'Near-Snowball' Earth. Geophys. Res. Lett. 28, 283–286 (2001).

    Article  Google Scholar 

  22. 22

    Donnadieu, Y., Fluteau, F., Ramstein, G., Ritz, C. & Besse, J. Is there a conflict between the Neoproterozoic glacial deposits and the snowball Earth interpretation: An improved understanding with numerical modelling. Earth Planet. Sci. Lett. 208, 101–112 (2003).

    Article  Google Scholar 

  23. 23

    Pollard, D. & Kasting, J. F. in The Extreme Proterozoic: Geology, Geochemistry, and Climate (eds Jenkins, G. S., McMenamin, M. A. S., McKay, C. P. & Sohl L.) 91–106 (Geophysical Monograph 146, American Geophysical Union, 2004).

    Google Scholar 

  24. 24

    Peltier, W. R., Tarasov, L., Vettoretti, G. & Solheim, L. P. in The Extreme Proterozoic: Geology, Geochemistry, and Climate (eds Jenkins, G. S., McMenamin, M. A. S., McKay, C. P. & Sohl L.) 107–124 (Geophysical Monograph 146, American Geophysical Union, 2004).

    Google Scholar 

  25. 25

    Pierrehumbert, R. T. High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature 429, 646–649 (2004).

    Article  Google Scholar 

  26. 26

    Pierrehumbert, R. T. Climate dynamics of a hard snowball Earth. J. Geophys. Res. 110, D01111 (2005).

    Article  Google Scholar 

  27. 27

    Le Hir, G., Ramstein, G., Donnadieu, Y. & Pierrehumbert, R. T. Investigating plausible mechanisms to trigger a deglaciation from a hard Snowball Earth. C. R. Géosci. 339, 274–287 (2007).

    Article  Google Scholar 

  28. 28

    Peltier, W. R., Liu, Y. & Crowley, J. W. Snowball Earth prevention by dissolved organic carbon remineralization. Nature 450, 813–818 (2007).

    Article  Google Scholar 

  29. 29

    Micheels, A. & Montenari, M. A snowball Earth versus a slushball Earth: Results from Neoproterozoic climate modelling sensitivity experiments. Geosphere 4, 401–410 (2008).

    Article  Google Scholar 

  30. 30

    Jenkins, G. S. & Frakes, L. A. GCM sensitivity test using increased rotation rate, reduced solar forcing and orography to examine low latitude glaciation in the Neoproterozoic. Geophys. Res. Lett. 25, 3525–3528 (1998).

    Article  Google Scholar 

  31. 31

    Williams, G. E., Kasting, J. F. & Frakes, L. A. Low-latitude glaciation and rapid changes in the Earth's obliquity explained by obliquity-oblateness feedback. Nature 396, 453–455 (1998).

    Article  Google Scholar 

  32. 32

    Jenkins, G. S. Global climate model high-obliquity solutions to the ancient climatic puzzles of the Faint-Young Sun Paradox and low-latitude Proterozoic glaciation. J. Geophys. Res. 105, 7357–7370 (2000).

    Article  Google Scholar 

  33. 33

    Donnadieu, Y., Ramstein, G., Fluteau, F., Besse, J. & Meert, J. Is high obliquity a plausible cause for Neoproterozoic glaciations? Geophys. Res. Lett. 29, 10.1029/2002GL015902 (2002).

  34. 34

    Donnadieu, Y., Goddéris, Y., Ramstein, G., Nedelec, A. & Meert, J. A 'snowball Earth' climate triggered by continental break-up through changes in run-off. Nature 428, 303–306 (2004).

    Article  Google Scholar 

  35. 35

    Goddéris, Y. et al. Coupled modelling of global carbon cycle and climate in the Neoproterozoic: Links between Rodinia break-up and major glaciations. C. R. Géosci. 339, 212–222 (2007).

    Article  Google Scholar 

  36. 36

    Poulsen, C. J. Absence of a runaway ice–albedo feedback in the Neoproterozoic. Geology 31, 473–476 (2003).

    Article  Google Scholar 

  37. 37

    Donnadieu, Y., Ramstein, G., Fluteau, F., Roche, D. & Ganopolski, A. The impact of atmospheric and oceanic heat transports on the sea–ice albedo instability during the Neoproterozoic. Clim. Dynam. 22, 293–306 (2004).

    Article  Google Scholar 

  38. 38

    Poulsen, C. J., Jacob, R. L., Pierrehumbert, R. T. & Huynh, T. T. Testing paleogeographic controls on a Neoproterozoic snowball Earth. Geophys. Res. Lett. 29, 10.1029/2001GL014352 (2002).

  39. 39

    Goodman, J. C. & Pierrehumbert, R. T. Glacial flow of floating marine ice in 'Snowball Earth'. J. Geophys. Res. 108, 10.1029/2002JC001471 (2003).

  40. 40

    Schermerhorn, L. J. G. Late Precambrian mixtites: Glacial and/or nonglacial? Am. J. Sci. 274, 673–824 (1974).

    Article  Google Scholar 

  41. 41

    Eyles, N. & Januszczak, N. Syntectonic subaqueous mass flows of the Neoproterozoic Otavi Group, Namibia: Where is the evidence for global glaciation? Basin Res. 19, 179–198 (2007).

    Article  Google Scholar 

  42. 42

    Allen, P. A., Leather, J. & Brasier, M. D. The Neoproterozoic Fiq glaciation and its aftermath, Huqf Supergroup of Oman. Basin Res. 16, 507–534 (2004).

    Article  Google Scholar 

  43. 43

    Etienne, J. L., Allen, P. A., Rieu, R. & Le Guerroué, E. in Glacial Sedimentary Processes and Products (eds Hambrey, M. J., Christoffersen, P., Glasser, N. F. & Hubbard, B.) 343–399 (Blackwell, 2008).

    Google Scholar 

  44. 44

    Condon, D. J., Prave, A. R. & Benn, D. I. Neoproterozoic glacial rain-out intervals: Observations and implications. Geology 30, 35–38 (2002).

    Article  Google Scholar 

  45. 45

    Williams, G. E. Precambrian permafrost horizons as indicators of palaeoclimate. Precambr. Res. 32, 233–242 (1986).

    Article  Google Scholar 

  46. 46

    Spencer, A. M. Late Pre-Cambrian Glaciation in Scotland (Memoir 6, The Geological Society of London, 1971).

    Google Scholar 

  47. 47

    Benn, D. I. & Prave, A. R. Subglacial and proglacial glacitectonic deformation in the Neoproterozoic Port Askaig Formation, Scotland. Geomorphology 75, 266–280 (2005).

    Article  Google Scholar 

  48. 48

    Schermerhorn, L. J. G. in Ice Ages: Ancient and Modern (eds Wright, A. E. & Mosley, F.) 241–274 (Seal House, 1975).

    Google Scholar 

  49. 49

    Arnaud, E. & Eyles, C. H. Neoproterozoic environmental change recorded in the Port Askaig Formation, Scotland: Climatic vs tectonic controls. Sedim. Geol. 183, 99–124.

  50. 50

    Hambrey, M. J. et al. The Late Precambrian Geology of the Scottish Highlands and Islands (Guide 44, The Geologists' Association, London, 1991).

    Google Scholar 

  51. 51

    Dobrzinski, N., Bahlburg, H. & Strauss, H. in The Extreme Proterozoic: Geology, Geochemistry and Climate (eds Jenkyns, G. S., McMenamin, M. A. S., McKay, C. P. & Sohl, L.) 13–32 (Monograph 146, American Geophysical Union, 2004).

    Google Scholar 

  52. 52

    Rieu, R., Allen, P. A., Plötze, M. & Pettke, T. Compositional and mineralogical variations in a Neoproterozoic glacially influenced succession, Mirbat area, southern Oman: Implications for palaeoweathering conditions. Precambr. Res. 154, 248–265 (2007).

    Article  Google Scholar 

  53. 53

    Rieu, R., Allen, P. A., Plötze, M. & Pettke, T. Climatic cycles during a Neoproterozoic 'Snowball' glacial epoch. Geology 35, 299–302 (2007).

    Article  Google Scholar 

  54. 54

    Young, G. M. & Gostin, V. A. An exceptionally thick upper Proterozoic (Sturtian) glacial succession in the Mount Painter area, South Australia. Geol. Soc. Am. Bull. 101, 834–845 (1989).

    Article  Google Scholar 

  55. 55

    McMechan, M. E. Vreeland diamictites — Neoproterozoic glaciogenic slope deposits, Rocky Mountains, Northeast British Columbia. Bull. Can. Petro. Geol. 48, 246–261 (2000).

    Article  Google Scholar 

  56. 56

    Leather, J., Allen, P. A., Brasier, M. D. & Cozzi, A. Neoproterozoic 'snowball Earth' under scrutiny: Evidence from the Fiq glaciation of Oman. Geology 30, 891–894 (2002).

    Article  Google Scholar 

  57. 57

    Naish, T. R. et al. A record of Antarctic climate and ice sheet history recovered. Eos 88, 557–558 (2007).

    Article  Google Scholar 

  58. 58

    Eyles, N. Earth's glacial record and its tectonic setting. Earth Sci. Rev. 35, 1–248 (1993).

    Article  Google Scholar 

  59. 59

    Allen, P. A. The Huqf Supergroup of Oman: Basin development and context for Neoproterozoic glaciation. Earth Sci. Rev. 84, 139–185 (2007).

    Article  Google Scholar 

  60. 60

    Bowring, S. A. et al. Geochronological constraints on the chronostratigraphic framework of the Neoproterozoic Huqf Supergroup, Sultanate of Oman. Am. J. Sci. 307, 1097–1145 (2007).

    Article  Google Scholar 

  61. 61

    Allen, P. A. Reconstruction of ancient sea conditions with an example from the Swiss Molasse. Mar. Geol. 60, 455–473 (1984).

    Article  Google Scholar 

  62. 62

    Williams, G. E. in The Precambrian Earth: Tempos and Events (eds Eriksson, P. G., Altermann, W., Nelson, D. R., Mueller W. U. & Cantuneanu, O.) 448–459 (Elsevier, 2004).

    Google Scholar 

  63. 63

    Williams, G. E. & Schmidt, P. W. in The Extreme Proterozoic: Geology, Geochemistry and Climate (eds Jenkyns, G. S., McMenamin, M. A. S., McKay, C. P. & Sohl, L.) 145–159 (Monograph 146, American Geophysical Union, 2004).

    Google Scholar 

  64. 64

    Rieu, R., Allen, P. A., Cozzi, A. & Etienne, J. L. A. Neoproterozoic glacially influenced basin margin succession and 'atypical' cap carbonate associated with bedrock palaeovalleys, Mirbat area, southern Oman. Basin Res. 18, 471–496 (2006).

    Article  Google Scholar 

  65. 65

    Rieu, R., Allen, P. A., Cozzi, A., Kosler, J. & Bussy, F. A composite stratigraphy for the Neoproterozoic Huqf Supergroup of Oman: Integrating new litho-, chemo- and chronostratigraphic data of the Mirbat area, southern Oman. J. Geol. Soc. Lond. 164, 997–1009 (2007).

    Article  Google Scholar 

  66. 66

    Miller, J. M. G. Glacial and syntectonic sedimentation: The upper Proterozoic Kingston Peak Formation, southern Panamint Range, eastern California. Bull. Geol. Soc. Am. 96, 1537–1553 (1985).

    Article  Google Scholar 

  67. 67

    Lindsay, J. F. Depositional controls on glacial facies associations in a basinal setting, Late Proterozoic, Amadeus Basin, central Australia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 73, 205–232 (1989).

    Article  Google Scholar 

  68. 68

    Moncrieff, A. C. M. & Hambrey, M. J. in Glacimarine Environments: Processes and Sediments (eds Dowdeswell, J. A. & Scourse, J. D.), 387–410 (Special Publication 53, The Geological Society of London, 1990).

    Google Scholar 

  69. 69

    Bell, R. E. The role of subglacial water in ice-sheet mass balance. Nature Geosci. 1, 297–304 (2008).

    Article  Google Scholar 

  70. 70

    Hoffmann, K.-H., Condon, D. J., Bowring, S. A. & Crowley, J. L. U–Pb zircon date from the Neoproterozoic Ghaub Formation, Namibia: Constraints on Marinoan glaciation. Geology 32, 817–820 (2004).

    Article  Google Scholar 

  71. 71

    Hoffman, P. F. On Cryogenian (Neoproterozoic) ice-sheet dynamics and the limitations of the glacial sedimentary record. 28th DeBeers Alexander Du Toit Memorial Lecture. S. Afr. J. Geol. 108, 557–576 (2005).

    Article  Google Scholar 

  72. 72

    Powell, R. D. & Cooper, J. M. in Glacier-Influenced Sedimentation on High-Latitude Continental Margins (eds Dowdeswell, J. A. & Cofaigh, C. O.) 215–244 (Special Publication 203, The Geological Society of London, 2002).

    Google Scholar 

  73. 73

    Hoffman, P. F. et al. Are basal Ediacaran (635 Ma) post-glacial 'cap dolostones' diachronous? Earth Planet. Sci. Lett. 258, 114–131 (2007).

    Article  Google Scholar 

  74. 74

    Le Hir, G., Goddéris, Y., Donnadieu, Y. & Ramstein, G. A geochemical modelling study of the evolution of the chemical composition of seawater linked to a 'snowball' glaciation. Biogeosciences 5, 253–267 (2008).

    Article  Google Scholar 

  75. 75

    Li, Z. X. New palaeomagnetic results from the 'cap dolomite' of the Neoproterozoic Walsh Tillite, northwestern Australia. Precambr. Res. 100, 359–370 (2000).

    Article  Google Scholar 

  76. 76

    Font, E., Trindade, R. I. F. & Nédelec, A., Detrital remanent magnetization in haematite-bearing Neoproterozoic Puga cap dolostone, Amazon craton: A rock magnetic and SEM study. Geophys. J. Int. 163, 491–500 (2005).

    Article  Google Scholar 

  77. 77

    Zhang, S., Jiang, G. & Han, Y. The age of the Nantuo Formation and Nantuo glaciation in South China. Terra Nova 1–6 (2008).

  78. 78

    Crowell, J. C. Pre-Mesozoic ice ages: Their bearing on understanding the climate system. (Memoir 192, Geological Society of America, 1999).

    Google Scholar 

  79. 79

    Kennedy, M. J., Runnegar, B., Prave, A. R., Hoffman, K- H. & Arthur, M. A. Two or four Neoproterozoic glaciations? Geology 26, 1059–1063 (1998).

    Article  Google Scholar 

  80. 80

    Kaufman, A. J., Hayes, J. M., Knoll, A. H. & Germs, G. J. B. Isotopic compositions of carbonates and organic carbon from upper Proterozoic successions in Namibia: Stratigraphic variation and the effects of diagenesis and metamorphism. Precambr. Res. 49, 301–327 (1991).

    Article  Google Scholar 

  81. 81

    Fairchild, I. J. & Hambrey, M. J. The Vendian succession of northeastern Spitzbergen: petrogenesis of a dolomite-tillite association. Precambr. Res. 26, 111–167 (1984).

    Article  Google Scholar 

  82. 82

    Knoll, A. H., Hayes, J. M., Kaufman, A. J., Swett, K. & Lambert, I. B. Secular variation in carbon isotope rations from the upper Proterozoic succession of Svalbard and east Greenland. Nature 321, 832–839 (1986).

    Article  Google Scholar 

  83. 83

    Eyles, N. & Eyles, C. H. Glacially influenced deep-marine sedimentation of the late Precambrian Gaskiers Formation, Newfoundland, Canada. Sedimentology 36, 601–620 (1989).

    Article  Google Scholar 

  84. 84

    Halverson, G. P., Hoffman, P. F., Schrag, D. P., Maloof, A. C. & Rice, A. H. N. Towards a Neoproterozoic composite carbon isotopic record. Bull. Geol. Soc. Am. 117, 1181–1207 (2005).

    Article  Google Scholar 

  85. 85

    Kendall, B. S., Creaser, R. A., Ross, G. M. & Selby, D. Constraints on the timing of Marinoan 'Snowball Earth' glaciation by 187Re–187Os dating of a Neoproterozoic postglacial black shale in Western Canada. Earth Planet. Sci. Lett. 222, 729–740.

  86. 86

    Kendall, B., Creaser, R. A. & Selby, D. Re–Os geochronology of postglacial black shales in Australia: Constrains on the timing of “Sturtian” glaciation. Geology 34, 729–732 (2006).

    Article  Google Scholar 

  87. 87

    Condon, D. et al. U–Pb ages from the Neoproterozoic Doushantuo Formation, China. Science 308, 95–98 (2005).

    Article  Google Scholar 

  88. 88

    Schaefer, J. et al. Near-synchronous interhemispheric termination of the Last Glacial Maximum in mid-latitudes. Science 312, 1510–1513 (2006).

    Article  Google Scholar 

  89. 89

    Kennedy, M. J., Christie-Blick, N. & Sohl, L. E. Are Proterozoic cap carbonates and isotopic excursions a record of gas hydrate destabilization following Earth's coldest intervals? Geology 29, 443–446 (2001).

    Article  Google Scholar 

  90. 90

    Jiang, G., Kennedy, M. J. & Christie-Blick, N. Stable isotopic evidence for methane seeps in Neoproterozoic postglacial cap carbonates. Nature 426, 822–826 (2003).

    Article  Google Scholar 

  91. 91

    Wang, J., Jiang, G., Xiao, S., Li, Q. & Wei, Q. Carbon isotopic evidence for widespread methane seeps in the ca. 635 Ma Doushantuo cap carbonate in south China. Geology 36, 347–350 (2008).

    Article  Google Scholar 

  92. 92

    Kennedy, M., Mrofka, D. & von der Borch, C. Snowball Earth termination by destabilization of equatorial permafrost methane clathrate. Nature 453, 642–645 (2008).

    Article  Google Scholar 

  93. 93

    Raub T. D., Evans, D. A. D. & Smirnov, A. V. in The Rise and Fall of the Ediacaran Biota—Special Publication 286 (eds Vickers-Rich, P. & Komarower, P.) 53–76 (The Geological Society of London 2007).

    Google Scholar 

  94. 94

    Allen, P. A. & Hoffman, P. F. Extreme winds and waves in the aftermath of a Neoproterozoic glaciation. Nature 433, 123–1227 (2005).

    Article  Google Scholar 

  95. 95

    Shields, G. A., Neoproterozoic cap carbonates: A critical appraisal of existing models and the plumeworld hypothesis. Terra Nova 17, 299–310 (2005).

    Article  Google Scholar 

  96. 96

    Soreghan, G. S. et al. Anomalous cold in the Pangaean tropics. Geology 36, 659–662 (2008).

    Article  Google Scholar 

  97. 97

    Ridgewell, A. J., Kennedy, M. J. & Caldeira, K. Carbonate deposition, climate stability, and Neoproterozoic ice ages. Science 302, 859–862 (2003).

    Article  Google Scholar 

  98. 98

    Donnadieu, Y., Ramstein, G., Goddéris, Y. & Fluteau, F. in The Extreme Proterozoic: Geology, Geochemistry and Climate (eds Jenkyns, G. S. McMenamin, M. A. S., McKay. C. P. & Sohl, L.) 79–89 (Geophysical Monograph Series 146, American Geophysical Union, 2004).

    Google Scholar 

  99. 99

    Rothman, D. H., Hayes, J. M. & Summons, R. E. Dynamics of the Neoproterozoic carbon cycle. Proc. Natl Acad. Sci. USA 100, 8124–8129 (2003).

    Article  Google Scholar 

  100. 100

    Leather, J. Sedimentology, Chemostratigraphy and Geochronology of the Lower Huqf Supergroup, Oman. PhD thesis, Trinity College Dublin (2001).

    Google Scholar 

  101. 101

    Frimmel, H. E., Kloetzli, U. S. & Siegfried, P. R. New Pb–Pb single zircon age constraints on the timing of Neoproterozoic glaciation and continental break-up in Namibia. J. Geol. 104, 459–469 (1996).

    Article  Google Scholar 

  102. 102

    Frimmel, H. E., Zartman, R. E. & Späth, A. Dating Neoproterozoic continental break-up in the Richtersveld Igneous complex, South Africa. J. Geol. 109, 493–508 (2001).

    Article  Google Scholar 

  103. 103

    Frimmel, H. E., Foelling, P. G. & Eriksson, P. G. Neoproterozoic tectonic and climatic evolution recorded in the Gariep Belt, Namibia and South Africa. Basin Res. 14, 55–67 (2002).

    Article  Google Scholar 

  104. 104

    Key, R. M. et al. The western arm of the Lufilian Arc in NW Zambia and its potential for copper mineralization. J. Afr. Earth Sci. 33, 503–528 (2001).

    Article  Google Scholar 

  105. 105

    Babinski, M. & Kaufman, A. J. in S. Am. Symp. Isotope Geology 4 1, 321–323 (Salvador, Brazil, 2003).

    Google Scholar 

  106. 106

    Babinski, M., Vieira, L. C. & Trindade, R. I. F. Direct dating of the Sete Lagoas cap carbonate (Bambuí Group, Brazil) and implications for the Neoproterozoic glacial events. Terra Nova 19, 401–406 (2007).

    Article  Google Scholar 

  107. 107

    Brasier, M. D. et al. New U–Pb zircon dates for the Neoproterozoic Ghubrah glaciation and for the top of the Huqf Supergroup, Oman. Geology 28, 175–178 (2000).

    Article  Google Scholar 

  108. 108

    Lund, K., Aleinikoff, J. N., Evans, K. V. & Fanning, C. M. SHRIMP U–Pb geochronology of Neoproterozoic Windermere Supergroup, central Idaho: Implications for rifting of western Laurentia and synchroneity of Sturtian glacial deposits. Geol. Soc. Am. Bull. 115, 349–372 (2003).

    Article  Google Scholar 

  109. 109

    Fanning, C. M. & Link, P. K. U–Pb SHRIMP ages of Neoproterozoic (Sturtian) glaciogenic Pocatello Formation, southeastern Idaho. Geology 32, 881–884 (2004).

    Article  Google Scholar 

  110. 110

    Zhou, C. et al. New constraints on the ages of Neoproterozoic glaciations in south China. Geology 32, 437–440 (2004).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Allen, P., Etienne, J. Sedimentary challenge to Snowball Earth. Nature Geosci 1, 817–825 (2008). https://doi.org/10.1038/ngeo355

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing