Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Correlation of Himalayan exhumation rates and Asian monsoon intensity

Abstract

Although most data suggest that the India–Eurasia continental collision began 45–55 Myr ago, the architecture of the Himalayan–Tibetan orogen is dominated by deformational structures developed in the Neogene period (<23 Myr ago). The stratigraphic record and thermochronometric data indicate that erosion of the Himalaya intensified as this constructional phase began and reached a peak around 15 Myr ago. It remained high until 10.5 Myr ago and subsequently slowed gradually to 3.5 Myr ago, but then began to increase once again in the Late Pliocene and Pleistocene epochs. Here we present weathering records from the South China Sea, Bay of Bengal and Arabian Sea that permit Asian monsoon climate to be reconstructed back to the earliest Neogene. These indicate a correlation between the rate of Himalayan exhumation—as inferred from published thermochronometric data—and monsoon intensity over the past 23 Myr. We interpret this correlation as indicating dynamic coupling between Neogene climate and both erosion and deformation in the Himalaya.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Physiographic map of Asia with study sites.
Figure 2: Correlation of erosional and depositional histories with the ODP Site 1148 monsoon intensity model.
Figure 3: Schematic cross-section of the southern margin of the Himalayan–Tibetan orogen.

Similar content being viewed by others

References

  1. Rowley, D. B. Age of initiation of collision between India and Asia: a review of stratigraphic data. Earth Planet. Sci. Lett. 145, 1–13 (1996).

    Article  Google Scholar 

  2. Najman, Y. et al. Dating of the oldest continental sediments from the Himalayan foreland basin. Nature 410, 194–197 (2001).

    Article  Google Scholar 

  3. DeCelles, P. G. et al. Detrital geochronology and geochemistry of Cretaceous-Early Miocene strata of Nepal: implications for timing and diachroneity of initial Himalayan orogenesis. Earth Planet. Sci. Lett. 227, 313–330 (2004).

    Article  Google Scholar 

  4. Hodges, K. V. et al. Thermobarometric and 40Ar/39Ar geochronologic constraints on Eohimalayan metamorphism in the Dinggye area, southern Tibet. Contrib. Mineral. Petrol. 117, 151–163 (1994).

    Article  Google Scholar 

  5. Godin, L. et al. Crustal thickening leading to exhumation of the Himalayan metamorphic core of central Nepal: Insight from U–Pb geochronology and 40Ar/39Ar thermochronology. Tectonics 20, 729–747 (2001).

    Article  Google Scholar 

  6. Ratschbacher, L. et al. Distributed deformation in southern and western Tibet during and after the India–Asia collision. J. Geophys. Res. 99, 19917–19945 (1994).

    Article  Google Scholar 

  7. Yin, A. et al. Tertiary structural evolution of the Gangdese thrust system, southeastern Tibet. J. Geophys. Res. 99, 18175–18201 (1994).

    Article  Google Scholar 

  8. Najman, Y. The detrital record of orogenesis: A review of approaches and techniques used in the Himalayan sedimentary basins. Earth Sci. Rev. 74, 1–72 (2006).

    Google Scholar 

  9. Clift, P. D. Controls on the erosion of Cenozoic Asia and the flux of clastic sediment to the ocean. Earth Planet. Sci. Lett. 241, 571–580 (2006).

    Article  Google Scholar 

  10. Curray, J. R. Sediment volume and mass beneath the Bay of Bengal. Earth Planet. Sci. Lett. 125, 371–383 (1994).

    Article  Google Scholar 

  11. Sun, X. & Wang, P. How old is the Asian monsoon system? Palaeobotanical records from China. Palaeogeogr. Palaeoclimatol. Palaeoecol. 222, 181–222 (2005).

    Article  Google Scholar 

  12. Guo, Z. T. et al. Onset of Asian desertification by 22 Myr ago inferred from loess deposits in China. Nature 416, 159–163 (2002).

    Article  Google Scholar 

  13. Garzione, C. N., Ikari, M. J. & Basu, A. R. Source of Oligocene to Pliocene sedimentary rocks in the Linxia basin in northeastern Tibet from Nd isotopes: Implications for tectonic forcing of climate. Geol. Soc. Am. Bull. 117, 1156–1166 (2005).

    Article  Google Scholar 

  14. Edmond, J. M. & Huh, Y. in Tectonic Climate and Climate Change (ed. Ruddiman, W. F.) 330–353 (Plenum, 1997).

    Google Scholar 

  15. White, A. F. & Blum, A. E. Effects of climate on chemical weathering in watersheds. Geochim. Cosmochim. Acta 59, 1729–1747 (1995).

    Article  Google Scholar 

  16. West, A. J., Galy, A. & Bickle, M. J. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235, 211–228 (2005).

    Article  Google Scholar 

  17. Nesbitt, H. W. & Young, G. M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 299, 715–717 (1982).

    Article  Google Scholar 

  18. Singh, S. K., Sarin, M. M. & France-Lanord, C. Chemical erosion in the eastern Himalaya; major ion composition of the Brahmaputra and δ13C of dissolved inorganic carbon. Geochim. Cosmochim. Acta 69, 3573–3588 (2005).

    Article  Google Scholar 

  19. Galy, A. & France-Lanord, C. Higher erosion rates in the Himalaya: Geochemical constraints on riverine fluxes. Geology 29, 23–26 (2001).

    Article  Google Scholar 

  20. Wang, P. et al. Site 1148. Proc. Ocean Drill. Prog., Init. Rep. 184, 121 (2000).

    Google Scholar 

  21. Li, X. et al. Geochemical and Nd isotopic variations in sediments of the South China Sea: a response to Cenozoic tectonism in SE Asia. Earth Planet. Sci. Lett. 211, 207–220 (2003).

    Article  Google Scholar 

  22. Zheng, H. et al. Late Miocene and mid-Pliocene enhancement of the east Asian monsoon as viewed from the land and sea. Glob. Planet. Change 41, 147–155 (2004).

    Article  Google Scholar 

  23. Zachos, J. et al. Trends, rhythms and aberrations in global climate 65 Ma to Present. Science 292, 686–693 (2001).

    Article  Google Scholar 

  24. Wei, G. et al. Geochemical record of chemical weathering and monsoon climate change since the early Miocene in the South China Sea. Paleoceanography 21, PA4214 (2006).

    Article  Google Scholar 

  25. France-Lanord, C., Derry, L. & Michard, A. in Himalayan Tectonics Vol. 74 (eds Treloar, P. J. & Searle, M. P.) 603–621 (Geological Society, 1993).

    Google Scholar 

  26. Derry, L. A. & France-Lanord, C. Neogene Himalayan weathering history and river 87Sr/86Sr: impact on the marine Sr record. Earth Planet. Sci. Lett. 142, 59–74 (1996).

    Article  Google Scholar 

  27. Crowley, S. F., Stow, D. A. V. & Croudace, I. W. in Geological Evolution of Ocean Basins: Results from the Ocean Drilling Program Vol. 131 (eds Cramp, A. et al.) 151–176 (Geol. Soc. Lond., spec. publ., Geological Society, 1998).

    Google Scholar 

  28. Chakraborty, A., Nanjundiah, R. S. & Srinivasan, J. Role of Asian and African Orography in Indian Summer Monsoon. Geophys. Res. Lett. 29 0.1029/2002GL015522 (2002).

  29. Metivier, F. et al. Mass accumulation rates in Asia during the Cenozoic. Geophys. J. Int. 137, 280–318 (1999).

    Article  Google Scholar 

  30. Cochran, J. R. in Proc. Ocean Drill. Prog., Sci. Rep. Vol. 116 (eds Cochran, J. R. & Stow, D. A. V.) 397–414 (Ocean Drilling Program, College Station, 1990).

    Google Scholar 

  31. Burbank, D. W., Derry, L. A. & France-Lanord, C. Reduced Himalayan sediment production 8 Myr ago despite an intensified monsoon. Nature 364, 48–50 (1993).

    Article  Google Scholar 

  32. Hodges, K. in The Crust (ed. Rudnick, R.) 263–292 (Elsevier, 2003).

    Google Scholar 

  33. Szulc, A. G. et al. Tectonic evolution of the Himalaya constrained by detrital 40Ar/39Ar, Sm/Nd and petrographic data from the Siwalik foreland basin succession, SW Nepal. Basin Res. 18, 375–391 (2006).

    Article  Google Scholar 

  34. Reiners, P. W. & Brandon, M. T. Using thermochronology to understand orogenic erosion. Annu. Rev. Earth Planet. Sci. 34, 419–466 (2006).

    Article  Google Scholar 

  35. Huntington, K. W., Blythe, A. E. & Hodges, K. V. Climate change and late Pliocene acceleration of erosion in the Himalaya. Earth Planet. Sci. Lett. 252, 107–118 (2006).

    Article  Google Scholar 

  36. Thiede, R. C. et al. Climatic control on rapid exhumation along the Southern Himalayan Front. Earth Planet. Sci. Lett. 222, 791–806 (2004).

    Article  Google Scholar 

  37. Hodges, K. V. Tectonics of the Himalaya and southern Tibet from two perspectives. Geol. Soc. Am. Bull. 112, 324–350 (2000).

    Article  Google Scholar 

  38. Burchfiel, B. C. et al. Geol. Soc. Am. Spec. Pap. 269, 41 (Geological Society of America, 1992).

    Google Scholar 

  39. Nelson, K. D. et al. Partially molten middle crust beneath southern Tibet; synthesis of Project INDEPTH results. Science 274, 1684–1688 (1996).

    Article  Google Scholar 

  40. Beaumont, C. et al. Himalayan tectonics explained by extrusion of a low-viscosity crustal channel coupled to focused surface denudation. Nature 414, 738–742 (2001).

    Article  Google Scholar 

  41. Hodges, K., Hurtado, J. & Whipple, K. Southward extrusion of Tibetan crust and its effect on Himalayan tectonics. Tectonics 20, 799–809 (2001).

    Article  Google Scholar 

  42. Robinson, D. M., DeCelles, P. G. & Copeland, P. Tectonic evolution of the Himalayan thrust belt in western Nepal; implications for channel flow models. Geol. Soc. Am. Bull. 118, 865–885 (2006).

    Article  Google Scholar 

  43. Kitoh, A. Effects of mountain uplift on east Asian summer climate investigated by a coupled atmosphere–ocean GCM. J. Clim. 17, 783–802 (2004).

    Article  Google Scholar 

  44. An, Z. et al. Evolution of Asian monsoons and phased uplift of the Himalaya–Tibetan Plateau since late Miocene times. Nature 411, 62–66 (2001).

    Article  Google Scholar 

  45. Behrensmeyer, A. K. et al. The structure and rate of late Miocene expansion of C4 plants: Evidence from lateral variation in stable isotopes in paleosols of the Siwalik Group, northern Pakistan. Geol. Soc. Am. Bull. 119, 1486–1505 (2007).

    Article  Google Scholar 

  46. Ganjoo, R. K. & Shaker, S. Middle Miocene pedological record of monsoonal climate from NW Himalaya (Jammu & Kashmir State), India. J. Asian Earth Sci. 29, 704–714 (2007).

    Article  Google Scholar 

  47. Thiry, M. Palaeoclimatic interpretation of clay minerals in marine deposits: an outlook from the continental origin. Earth Sci. Rev. 49, 201–221 (2000).

    Article  Google Scholar 

  48. Gradstein, F. M., Ogg, J. G. & Smith, A. G. A Geologic Time Scale (Cambridge Univ. Press, 2004).

    Google Scholar 

  49. Shipboard Scientific Party, in Proc. Ocean Drill. Prog., Init. Rep. Vol. 184, (2000).

  50. Gartner, S. Neogene calcareous nannofossil biostratigraphy, Leg 116 (Central Indian Ocean), in Proc. Ocean Drill. Prog., Sci. Rep. Vol. 116, 165–187 (1990).

Download references

Acknowledgements

P.D.C. thanks the A. von Humboldt Foundation for the time to work on this study. K.V.H. thanks the US National Science Foundation for supporting this research through EAR0087508, EAR0642731 and EAR0708714 through its Continental Dynamics, Sedimentary Geology and Paleobiology, and Tectonics programs.

Author information

Authors and Affiliations

Authors

Contributions

P.D.C. was responsible for deriving marine sedimentation rates and synthesizing the data. K.V.H. compiled thermochronology data and related the weathering to Himalayan tectonic history. D.H. generated the CRAT weathering proxy and processed colour spectral data. R.H. produced the whole-sediment XRF data, and H.V.L. and G.C. were responsible for the whole-core XRF scanner data.

Corresponding author

Correspondence to Peter D. Clift.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2908 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clift, P., Hodges, K., Heslop, D. et al. Correlation of Himalayan exhumation rates and Asian monsoon intensity. Nature Geosci 1, 875–880 (2008). https://doi.org/10.1038/ngeo351

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo351

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing