Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region

Abstract

The great Sumatra earthquake of 26 December 2004 was the third largest event to occur in a subduction zone in the past 50 years. The rupture initiated at 30–40 km depth northwest of Simeulue Island1 and propagated for 1,300 km to the northern Andaman Islands2. The earthquake was caused by sudden slip along the plate interface between the subducting Indo-Australian plate and the overriding Sunda plate3,4. Although detailed knowledge of the structure of the subduction interface is important to define potential sources of large megathrust earthquakes, available data5,6,7,8 have not provided such information so far. Here we present a high-quality seismic section of the focal region, from the abyssal plain down to 40 km depth below the fore-arc. The seismic data reveal that the subducting crust and oceanic Moho—the crust–mantle boundary—are broken and displaced by landward-dipping thrust ramps, suggesting that the megathrust now lies in the oceanic mantle. We image active thrust faults at the front of the accretionary wedge, consistent with thrust aftershocks on steeply dipping planes. Our observations imply that very strong coupling leading to brittle failure of mantle rocks accounts for the initiation of such an exceptionally large earthquake.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Study area.
Figure 2: Seismic profile WG1.
Figure 3: Detailed seismic images.
Figure 4: Schematic depth cross-section at 1:1 scale.

Similar content being viewed by others

References

  1. Lay, T. et al. The Great Sumatra–Andaman Earthquake of 26 December 2004. Science 308, 1127–1133 (2005).

    Article  Google Scholar 

  2. Ammon, C. J. et al. Rupture process of the 2004 Sumatra–Andaman earthquake. Science 308, 1133–1139 (2005).

    Article  Google Scholar 

  3. Rhie, J., Dreger, D, Bürgmann, R. & Romanowicz, B. Slip of the 2004 Sumatra–Andaman earthquake from joint inversion of long-period global seismic waveforms and GPS static offsets. Bull. Seismol. Soc. Am. 97, S115–S127 (2007).

    Article  Google Scholar 

  4. Vigny, C. et al. Insight into the 2004 Sumatra–Andaman earthquake from GPS measurements in southeast Asia. Nature 436, 201–206 (2005).

    Article  Google Scholar 

  5. Henstock, T. J., McNeill, L. C. & Tappin, D. R. Seafloor morphology of the Sumatran subduction zone: Surface rupture during megathrust earthquakes? Geology 34, 485–488 (2006).

    Article  Google Scholar 

  6. Sibuet, J.-C. et al. 26th December 2004 Great Sumatra–Andaman Earthquake: Seismogenic zone and active splay faults. Earth Planet. Sci. Lett. 263, 88–103 (2007).

    Article  Google Scholar 

  7. Dewey, J. W. et al. Seismicity associated with the Sumatra–Andaman Islands earthquake of 26 December 2004. Bull. Seismol. Soc. Am. 97, S25–S42 (2007).

    Article  Google Scholar 

  8. Engdahl, E. R., Villasenor, A., DeShon, H. R. & Thurber, C. H. Teleseismic relocation and assessment of seismicity (1918–2005) in the region of the 2004 Mw 9.0 Sumatra–Andaman and the 2005 Mw 8.6 Nias Island Great earthquakes. Bull. Seismol. Soc. Am. 97, S1–S19 (2007).

    Article  Google Scholar 

  9. Kopp, H., Flueh, E., Klaeschen, D., Bialas, J. & Reichert, C. Crustal structure of the central Sunda margin at the onset of oblique subduction. Geophys. J. Int. 147, 449–474 (2001).

    Article  Google Scholar 

  10. Park, J.-O. et al. A deep strong reflector in the Nankai accretionary wedge from multichannel seismic data: Implications for underplating and interseismic shear stress release. J. Geophys. Res. 107 10.1029/2001JB000262 (2002).

  11. Singh, S. C. et al. Seismic reflection images of deep lithospheric faults and thin crust at the at the actively deforming Indo-Australian plate boundary in the Indian Ocean. Eos. Trans. AGU 88, Fall Meet. Suppl., Abstract T22E-06 (2007).

  12. Ranero, C. R., Phipps Morgan, J., McIntosh, K. & Reichert, C. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367–373 (2003).

    Article  Google Scholar 

  13. Franke, D. et al. The great Sumatra–Andaman earthquakes-Imaging the boundary between the ruptures of the great 2004 and 2005 earthquakes. Earth Planet. Sci. Lett. 269, 119–130 (2008).

    Article  Google Scholar 

  14. Deplus, C. et al. Direct evidence of active deformation in the eastern Indian oceanic plate. Geology 26, 131–134 (1998).

    Article  Google Scholar 

  15. Abercrombie, R. E., Antolik, M. & Ekström, G. The June 2000 Mw 7.9 earthquake south of Sumatra: Deformation in the India-Australia plate. J. Geophys. Res. 410, 74–77 (2003).

    Google Scholar 

  16. Graindorge, D. et al. Interaction/links between lower plate and upper deformation at the NW Sumatran convergent margin from seafloor morphology. Earth Planet. Sci. Lett. 10.1016/j.epsl.2008.04.053 (2008, in the press).

  17. Chlieh, M. et al. Coseismic and afterslip of the great Mw 9.15 Sumatra–Andaman earthquake of 2004. Bull. Seismol. Soc. Am. 97, S152–S173 (2007).

    Article  Google Scholar 

  18. Calvert, A. J., Ramachandran, K., Kao, H. & Fisher, M. A. Local thickening of the Cascadia forearc crust and the origin of seismic reflectors in the uppermost mantle. Tectonophysics 420, 175–188 (2006).

    Article  Google Scholar 

  19. Samuel, M. A., Harbury, N. A., Bakri, A., Banner, F. T. & Hartono, L. A new stratigraphy for the Islands of the Sumatran Arc, Indonesia. J. SE Asian Earth Sci. 15, 339–380 (1997).

    Article  Google Scholar 

  20. Klingelhoefer, F. et al. First results from the SAGER-OBS deep seismic cruise (July/August 2006) offshore Sumatra. Geophys. Res. Abs. European Geosciences Union 9, A6263 (2007).

  21. Wang, C. Y. Sediment subduction and frictional sliding in subduction zones. Geology 8, 530–533 (1980).

    Article  Google Scholar 

  22. Subarya, C. et al. Plate boundary deformation with the Great Sumatra–Andaman earthquake. Nature 440, 46–51 (2006).

    Article  Google Scholar 

  23. Banerjee, P., Politz, F., Nagarajan, B. & Bürgmann, R. Coseismic slip distributions of the 26 December 2004 Sumatra–Andaman and 28 March 2005 Nias earthquakes from GPS static offsets. Bull. Seismol. Soc. Am. 97, S87–S102 (2007).

    Article  Google Scholar 

  24. Shelly, D. R., Beroza, G. C., Ide, S. & Nakamula, S. Low-frequency earthquakes in Shikoku, Japan, and their relationship to episodic tremor and slip. Nature 442, 188–191 (2006).

    Article  Google Scholar 

  25. Hyndman, R. D., Wang, K & Yamano, M. Thermal constraints on the seismogenic portion of the southwestern Japan subduction thrust. J. Geophys. Res. 100, 15373–15392 (1995).

    Article  Google Scholar 

  26. Simoes, M., Avouac, J. P., Cattin, R. & Henry, P. Sumatra subduction zone: A case for a locked fault zone extending into the mantle. J. Geophys. Res. 109, B10402 (2004).

    Article  Google Scholar 

  27. Abercrombie, R. E. & Ekström, G. Earthquake slip on ocean transform faults. Nature 410, 74–77 (2001).

    Article  Google Scholar 

  28. Kohlstedt, D. L., Evans, B. & Mackwell, S. J. Strength of the lithosphere: Constraints imposed by laboratory experiments. J. Geophys. Res. 100, 17587–17602 (1995).

    Article  Google Scholar 

  29. Natawidjaja, D. et al. Source parameters of the great Sumatran megathrust earthquakes of 1797 and 1833 inferred from coral microatolls. J. Geophys. Res. 111, B06403 (2006).

    Article  Google Scholar 

  30. Wang, K. & Hu, Y. Accretionary prisms in subduction earthquake cycles: The theory of dynamic Coulomb wedge. J. Geophys. Res. 111, B06410 (2006).

    Google Scholar 

  31. Feldl, N. & Bilham, R. Great Himalayan earthquakes and the Tibetan plateau. Nature 444, 165–170 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Schlumberger for its overall support and contribution to this project, and in particular, we recognize the efforts made by the captain and crew of the WesternGeco Q-Marine vessel, Geco Searcher. J.-P. Montagner and J. Ludden provided constant support for the Sumatra–Andaman Great Earthquake Research (SAGER) initiative. Agence National de la Recherche (France) and IPG Paris financially supported the participation of scientists in the survey. This is a collaborative project between the Government of Indonesia (BPPT & LIPI), Schlumberger (WesternGeco) and the Institut de Physique du Globe (IPG) de Paris. We thank R. Engdahl for providing aftershock relocations. Comments by D. Scholl helped improve the manuscript. This is IPGP contribution number 2432.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish C. Singh.

Supplementary information

Supplementary Information

Supplementary Information (PDF 14709 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, S., Carton, H., Tapponnier, P. et al. Seismic evidence for broken oceanic crust in the 2004 Sumatra earthquake epicentral region. Nature Geosci 1, 777–781 (2008). https://doi.org/10.1038/ngeo336

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo336

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing