Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Putative greigite magnetofossils from the Pliocene epoch

Abstract

Magnetotactic bacteria produce chains of magnetite1,2 and/or greigite3,4,5 crystals within their cell bodies called magnetosomes that are permanently magnetized6. They use these magnets to navigate along geomagnetic field lines to reach their preferred habitat7. Greigite magnetosomes have been well documented in modern sedimentary environments, but their identification in the fossil record remains controversial. Here we use transmission electron microscopy, electron diffraction patterns and rockmagnetic analyses to assess the origins of nanometre-scale greigite crystals found in Pliocene claystones from the Carpathian foredeep of Romania. We find that, like modern magnetosomal greigite grains, the crystals are single domain8, with few crystallographic defects and an overall shape consistent with an intracellular origin. We suggest these crystals are magnetosomal in origin, which would place them among the oldest greigite magnetofossils identified so far. The crystals also carry a primary magnetic signal, which has remained stable since its acquisition 5.3–2.6 million years ago. We suggest that greigite magnetofossils could therefore provide reliable records of ancient geomagnetic field variations, and that they could also be used as a proxy to assess palaeoenvironmental conditions in low-oxygen sedimentary environments.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Greigite-based magnetostratigraphy of the Bădislava valley (central plots).
Figure 2: Fossil elongated prismatic greigite magnetosomes.
Figure 3: Fossil cuboctahedral greigite magnetosomes.

Similar content being viewed by others

References

  1. Blakemore, R. P. Magnetotactic bacteria. Science 190, 377–379 (1975).

    Article  Google Scholar 

  2. Frankel, R. B., Blakemore, R. P. & Wolfe, R. S. Magnetite in freshwater magnetotactic bacteria. Science 203, 1355–1356 (1979).

    Article  Google Scholar 

  3. Farina, M., Esquivel, D. M. S. & Lins de Barros, H. G. P. Magnetic iron-sulphur crystals from a magnetotactic microorganism. Nature 343, 256–258 (1990).

    Article  Google Scholar 

  4. Mann, S., Sparks, N. H. C., Frankel, R. B., Bazylinski, D. A. & Jannasch, H. W. Biomineralization of ferrimagnetic greigite (Fe3S4) and iron pyrite (FeS2) in a magnetotactic bacterium. Nature 343, 258–261 (1990).

    Article  Google Scholar 

  5. Bazylinski, D. A., Heywood, B. R., Mann, S. & Frankel, R. B. Fe3O4 and Fe3S4 in a bacterium. Nature 366, 218–218 (1993).

    Article  Google Scholar 

  6. Johnsen, S. & Lohmann, K. J. The physics and neurobiology of magnetoreception. Nature Rev. 6, 703–712 (2005).

    Article  Google Scholar 

  7. Bazylinski, D. A. & Frankel, R. B. Magnetosome formation in prokaryotes. Nature Rev. 2, 217–230 (2004).

    Google Scholar 

  8. Diaz Ricci, J. C. & Kirschvink, J. L. Magnetic domain state and coercivity predictions for biogenic greigite (Fe3S4): A comparison of theory with magnetosome observations. Geophys. J. Res. 97, 17309–17315 (1992).

    Article  Google Scholar 

  9. Hounslow, M. W. & Maher, B. A. Quantitative extraction and analysis of the carriers of magnetization in sediments. Geophys. J. Int. 124, 56–74 (1996).

    Article  Google Scholar 

  10. Chang, S.-B. R. & Kirschvink, J. L. Magnetofossils, the magnetization of the sediments, and the evolution of magnetite biomineralization. Annu. Rev. Earth Planet. Sci. 17, 169–195 (1989).

    Article  Google Scholar 

  11. Moskowitz, B. M. Biomineralization of magnetic minerals. Rev. Geophys. 33, 123–128 (1995).

    Article  Google Scholar 

  12. Posfai, M. et al. Crystal-size distributions and possible biogenic origin of Fe sulfides. Eur. J. Mineral. 13, 691–703 (2001).

    Article  Google Scholar 

  13. Skinner, B. J., Erd, R. C. & Grimaldi, F. S. Greigite, the thio-spinel of iron; a new mineral. Am. Mineral. 49, 543–555 (1964).

    Google Scholar 

  14. Reynolds, R. L. et al. Magnetization and geochemistry of greigite bearing Cretaceous strata, North Slope Basin, Alaska. Am. J. Sci. 294, 485–528 (1994).

    Article  Google Scholar 

  15. Roberts, A. P. & Weaver, R. Multiple mechanisms of remagnetization involving sedimentary greigite (Fe3S4). Earth Planet. Sci. Lett. 231, 263–277 (2005).

    Article  Google Scholar 

  16. Berner, R. A. Thermodynamic stability of sedimentary iron sulfides. Am. J. Sci. 265, 773–785 (1967).

    Article  Google Scholar 

  17. Rickard, D. & Luther, G. W. Chemistry of iron sulfides. Chem. Rev. 107, 514–562 (2007).

    Article  Google Scholar 

  18. Vasiliev, I. et al. Towards an astrochronological framework for the eastern Paratethys Mio-Pliocene sedimentary sequences of the Focsani basin (Romania). Earth Planet. Sci. Lett. 227, 231–247 (2004).

    Article  Google Scholar 

  19. Vasiliev, I., Krijgsman, W., Stoica, M. & Langereis, C. G. Mio-Pliocene magnetostratigraphy in the southern Carpathian foredeep and Mediterranean-Paratethys correlation. Terra Nova 17, 374–387 (2005).

    Article  Google Scholar 

  20. Vasiliev, I. et al. Early diagenetic greigite as a recorder of the palaeomagnetic signal in Miocene–Pliocene sedimentary rocks of the Carpathian foredeep (Romania). Geophys. J. Int. 171, 613–629 (2007).

    Article  Google Scholar 

  21. Panaiotu, C. E., Vasiliev, I., Panaiotu, C. G., Krijgsman, W. & Langereis, C. G. Provenance analysis as a key to orogenic exhumation: A case study from the East Carpathians (Romania). Terra Nova 19, 120–126 (2007).

    Article  Google Scholar 

  22. Stoica, M., Lazar, I., Vasiliev, I. & Krijgsman, W. Mollusc assemblages of the Pontian and Dacian deposits in the Topolog-Arges area (southern Carpathian foredeep - Romania). Geobios 40, 391–405 (2007).

    Article  Google Scholar 

  23. Kopp, R. E. & Kirschvink, J. L. The identification and biogeochemical interpretation of fossil magnetotactic bacteria. Earth Sci. Rev. 86, 42–61 (2007).

    Article  Google Scholar 

  24. Kobayashi, A. et al. Experimental observation of magnetosome chain collapse in magnetotactic bacteria: Sedimentological, paleomagnetic, and evolutionary implications. Earth Planet. Sci. Lett. 245, 538–550 (2006).

    Article  Google Scholar 

  25. Kruiver, P. P., Dekkers, M. J. & Heslop, D. Quantification of the magnetic coercivity components by the analysis of acquisition curves of isothermal remanent magnetisation. Earth Planet. Sci. Lett. 189, 269–276 (2001).

    Article  Google Scholar 

  26. Rowan, C. J. & Roberts, A. P. Magnetite dissolution, diachronous greigite formation, and secondary magnetizations from pyrite oxidation: Unravelling complex magnetizations in Neogene marine sediments from New Zealand. Earth Planet. Sci. Lett. 241, 119–137 (2006).

    Article  Google Scholar 

  27. Pike, C. R., Roberts, A. P. & Verosub, K. L. Characterising interactions in fine magnetic particle system using first order reversal curves. J. Appl. Phys. 85, 6660–6667 (1999).

    Article  Google Scholar 

  28. Simmons, S. L., Sievert, S. M., Frankel, R. B., Bazylinski, D. A. & Edwards, K. J. Spatiotemporal distribution of marine magnetotactic bacteria in a seasonally stratified coastal salt pond. Appl. Env. Microbiol. 70, 6230–6239 (2004).

    Google Scholar 

  29. Tauxe, L. Inclination flattening and the geocentric axial dipole hypothesis. Earth Planet. Sci. Lett. 233, 247–261 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Netherlands Research Centre for Integrated Solid Earth Sciences (ISES) and the Netherlands Geosciences Foundation (ALW) with support from the Netherlands Organization for Scientific Research (NWO). J. Kirschvink is thanked for providing the new code for the single-domain stability field of greigite.

Author information

Authors and Affiliations

Authors

Contributions

I.V. initiated the project, undertook the analyses and provided the interpretation. C.F. and J.D.M. assisted and advised on TEM microscopy. C.G.L. assisted with the NRM analyses and the TK03.GAD correction. M.J.D. and W.K. advised and assisted throughout.

Corresponding author

Correspondence to Iuliana Vasiliev.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4343 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasiliev, I., Franke, C., Meeldijk, J. et al. Putative greigite magnetofossils from the Pliocene epoch. Nature Geosci 1, 782–786 (2008). https://doi.org/10.1038/ngeo335

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo335

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing