Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Seismic evidence for distinct anisotropy in the innermost inner core

Abstract

Knowledge of the seismic structure of the innermost inner core is important for understanding the formation of the inner core1,2,3. It has been suggested recently that this region may exhibit distinct seismic anisotropy4,5. Here, we use the difference in travel times between seismic waves reflected at the underside of the inner core boundary and those traversing the inner core to constrain the seismic anisotropy. We calculated travel-time residuals for waves generated by two deep earthquakes that occurred in Indonesia and Argentina respectively, recorded by seismic arrays in Venezuela and China. The travel-time residuals are systematically larger, by about 1.8 s, for waves that travel roughly along the equatorial plane of the inner core (Indonesia–Venezuela) than for those travelling in a direction at an angle of 28 to the equatorial plane (from Argentina to China). The difference in travel times is arguably most sensitive to the structure near the centre of the Earth, and thus provides evidence for deep layering within the inner core. Our results are consistent with models invoking seismic anisotropy of the innermost inner core with the slowest direction tilted at an angle of 45 to the equatorial plane4.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Ray paths and synthetic seismograms of the core phases.
Figure 2: Map of the earthquakes and the arrays.
Figure 3: Examples of seismograms recorded by the two arrays.
Figure 4: Results of stacking and beam-forming analyses.

Similar content being viewed by others

References

  1. Jacobs, J. A. The Earth’s Inner Core. Nature 172, 297–298 (1953).

    Article  Google Scholar 

  2. Buffett, B. A. in Earth’s Deep Interior: Mineral Physics and Seismic Tomography From the Atomic to Global Scale Vol. 117 (eds Karato, S. et al.) 37–62 (Geophys. Monogr. Ser., AGU, Washington, 2000).

    Book  Google Scholar 

  3. Yoshida, S., Sumita, I. & Kumazawa, M. Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy. J. Geophys. Res. 101, 28085–28104 (1996).

    Article  Google Scholar 

  4. Ishii, M. & Dziewonski, A. M. The innermost inner core of the earth: Evidence for a change in anisotropic behaviour at the radius of about 300 km. Proc. Natl Acad. Sci. 99, 14026–14030 (2002).

    Article  Google Scholar 

  5. Beghein, C. & Trampert, J. Robust normal mode constraints on inner-core anisotropy from model space search. Science 299, 552–555 (2003).

    Article  Google Scholar 

  6. Niu, F. & Wen, L. Hemispherical variations in seismic velocity at the top of the Earth’s inner-core. Nature 410, 1081–1084 (2001).

    Article  Google Scholar 

  7. Creager, K. C. Anisotropy of the inner core from differential travel times of the phases PKP and PKIKP. Nature 356, 309–314 (1992).

    Article  Google Scholar 

  8. Tanaka, S. & Hamaguchi, H. Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)–PKP(DF) times. J. Geophys. Res. 102, 2925–2938 (1997).

    Article  Google Scholar 

  9. Breger, L., Tkalcic, H. & Romanowicz, B. The effects of D on PKP (AB-DF) travel time residuals and implications for inner core structure. Earth Planet. Sci. Lett. 175, 133–143 (2000).

    Article  Google Scholar 

  10. Aki, K. & Richards, P. G. Quantitative Seismology (W. H. Freeman, New York, 1980).

    Google Scholar 

  11. Dziewonski, A. M., Chou, T.-A. & Woodhouse, J. H. Determination of earthquake source parameters from waveform data for studies of global and regional seismicity. J. Geophys. Res. 86, 2825–2852 (1981).

    Article  Google Scholar 

  12. Dziewonski, A. M. & Anderson, D. L. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).

    Article  Google Scholar 

  13. Takeuchi, N., Geller, R. J. & Cummins, P. R. Highly accurate P-SV complete synthetic seismograms using modified DSM operators. Geophys. Res. Lett. 23, 1175–1178 (1993).

    Article  Google Scholar 

  14. Choy, G. L. & Richards, P. G. Pulse distortion and Hilbert transformation in multiply reflected and refracted body waves. Bull. Seismol. Soc. Am. 65, 55–70 (1975).

    Google Scholar 

  15. Brune, J. N., Nafe, J. E. & Alsop, L. E. The polar phase shift of surface waves on a sphere. Bull. Seismol. Soc. Am 51, 247–257 (1961).

    Google Scholar 

  16. Rial, J. & Cormier, V. Seismic waves at the epicentre’s antipode. J. Geophys. Res. 85, 2661–2668 (1980).

    Article  Google Scholar 

  17. Schimmel, M. & Paulssen, H. Noise reduction and detection of weak, coherent signals through phase-weighted stacks. Geophys. J. Int. 130, 497–505 (1997).

    Article  Google Scholar 

  18. Fukao, Y., Widiyantoro, S. & Obayashi, M. Stagnant slabs in the upper and lower mantle transition zone. Geophys. Rev. 39, 291–323 (2001).

    Article  Google Scholar 

  19. Garnero, E. J. & Thorne, M. in Earth’s ULVZ: Ultra-Low Velocity Zone, in Encyclopedia of Geomagnetism and Paleomagnetism (eds Gubbins, D. & Herrero-Bervera, E.) (Springer, Netherlands, 2008).

    Google Scholar 

  20. Kennett, B. L. N. & Gudmundsson, O. Ellipticity corrections for seismic phases. Geophys. J. Int. 127, 40–48 (1996).

    Article  Google Scholar 

  21. Souriau, A. & Souriau, M. Ellipticity and density at the inner core boundary from subcritical PKiKP and PcP data. Geophys. J. Int. 98, 39–54 (1989).

    Article  Google Scholar 

  22. Wen, L. & Niu, F. Seismic velocity and attenuation structures in the top of the Earth’s inner core. J. Geophys. Res. 107, doi:10.1029/2001JB000170 (2002).

  23. Vidale, J. E. & Earle, P. S. Fine-scale heterogeneity in the Earth’s inner core. Nature 404, 273–275 (2000).

    Article  Google Scholar 

  24. Morelli, A., Dziewonski, A. M. & Woodhouse, J. H. Anisotropy of the inner core inferred from PKIKP travel times. Geophys. Res. Lett. 13, 1545–1548 (1986).

    Article  Google Scholar 

  25. Shearer, P. M., Toy, K. M. & Orcutt, J. A. Axi-symmetric Earth models and inner-core anisotropy. Nature 333, 228–232 (1988).

    Article  Google Scholar 

  26. Creager, K. C. in Earth’s Deep Interior: Mineral Physics and Seismic Tomography From the Atomic to Global Scale Vol. 117 (eds Karato, S. et al.) 89–114 (Geophys. Monogr. Ser., AGU, Washington, 2000).

    Book  Google Scholar 

  27. Cormier, V. F. & Stroujkova, A. Waveform search for the innermost inner core. Earth Planet. Sci. Lett. 236, 96–105 (2005).

    Article  Google Scholar 

  28. Steinle-Neumann, G., Stixrude, L., Cohen, R. E. & Gulseren, O. Elasticity of iron at the temperature of the Earth’s inner core. Nature 413, 57–60 (2001).

    Article  Google Scholar 

  29. Belonoshko, A., Skorodumova, V., Rosengren, A. & Johansson, B. Elastic anisotropy of Earth’s inner core. Science 319, 797–800 (2008).

    Article  Google Scholar 

  30. Grand, S. P. Mantle shear-wave tomography and the fate of subducted slabs. Phil. Trans. R. Soc. A 360, 2475–2491 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We thank the BOLIVAR team, FUNVISIS (Venezuelan Foundation for Seismological Research) and CEA (China Earthquake Administration) for providing the data, N. Takeuchi for providing the DSM code and H. Kawakatsu and S. Tanaka for helpful discussions. This work is supported by Rice University and the NSF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fenglin Niu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Niu, F., Chen, QF. Seismic evidence for distinct anisotropy in the innermost inner core. Nature Geosci 1, 692–696 (2008). https://doi.org/10.1038/ngeo314

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo314

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing