Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Climate and human influences on global biomass burning over the past two millennia

A Corrigendum to this article was published on 23 February 2009

This article has been updated

Abstract

Large, well-documented wildfires have recently generated worldwide attention, and raised concerns about the impacts of humans and climate change on wildfire regimes. However, comparatively little is known about the patterns and driving forces of global fire activity before the twentieth century. Here we compile sedimentary charcoal records spanning six continents to document trends in both natural and anthropogenic biomass burning for the past two millennia. We find that global biomass burning declined from AD 1 to 1750, before rising sharply between 1750 and 1870. Global burning then declined abruptly after 1870. The early decline in biomass burning occurred in concert with a global cooling trend and despite a rise in the human population. We suggest the subsequent rise was linked to increasing human influences, such as population growth and land-use changes. Our compilation suggests that the final decline occurred despite increasing air temperatures and population. We attribute this reduction in the amount of biomass burned over the past 150 years to the global expansion of intensive grazing, agriculture and fire management.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Reconstructions of biomass burning, climate, population and land cover.
Figure 2: Zonal changes in biomass burning, population and land cover.
Figure 3: Distribution of sites in geographic, climate and vegetation space.
Figure 4: Comparison of biomass-burning reconstruction for Central and tropical South America with climate and population data.

Change history

  • 23 February 2009

    In the version of this Article originally published, the y axis label of Fig. 4d was incorrect. This error has been corrected in the HTML and PDF versions.

References

  1. Scott, A. C. The pre-quaternary history of fire. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 281–329 (2000).

    Article  Google Scholar 

  2. Bond, W. J. & Keeley, J. E. Fire as a global ‘herbivore’: The ecology and evolution of flammable ecosystems. Trends Ecol. Evol. 20, 387–394 (2005).

    Article  Google Scholar 

  3. Scott, A. C. & Glasspool, I. J. The diversification of Paleozoic fire systems and fluctuations in atmospheric oxygen concentration. Proc. Natl Acad. Sci. USA 103, 10861–10865 (2006).

    Article  Google Scholar 

  4. Westerling, A. L., Hidalgo, H. G., Cayan, D. R. & Swetnam, T. W. Warming and earlier spring increase western US forest wildfire activity. Science 313, 940–943 (2006).

    Article  Google Scholar 

  5. Van der Werf, G. R., Randerson, J. T., Giglio, L., Collatz, G. J. & Kasibhatla, P. S. Interannual variability in global biomass burning emission from 1997 to 2004. Atmos. Chem. Phys. 6, 3423–3441 (2006).

    Article  Google Scholar 

  6. Mouillot, F. & Field, C. B. Fire history and the global carbon budget: a 1×1 fire history reconstruction for the 20th century. Glob. Change Biol. 11, 398–420 (2005).

    Article  Google Scholar 

  7. Swetnam, T. W. & Betancourt, J. L. Mesoscale disturbance and ecological response to decadal climatic variability in the American southwest. J. Clim. 11, 3128–3147 (1998).

    Article  Google Scholar 

  8. Girardin, M. P. & Sauchyn, D. Three centuries of annual area burned variability in northwestern North America inferred from tree rings. Holocene 18, 205–214 (2008).

    Article  Google Scholar 

  9. Carcaillet, C. et al. Holocene biomass burning and global dynamics of the carbon cycle. Chemosphere 49, 845–863 (2002).

    Article  Google Scholar 

  10. Power, M. J. et al. Changes in fire regimes since the Last Glacial Maximum: An assessment based on a global synthesis and analysis of charcoal data. Clim. Dyn. 30, 887–907 (2008).

    Article  Google Scholar 

  11. Marlon, J., Bartlein, P. J. & Whitlock, C. Fire-fuel-climate linkages in the northwestern USA during the Holocene. Holocene 16, 1059–1071 (2006).

    Article  Google Scholar 

  12. Higuera, P. E., Peters, M. E., Brubaker, L. B. & Gavin, D. G. Understanding the origin and analysis of sediment-charcoal records with a simulation model. Quat. Sci. Rev. 26, 1790–1809 (2007).

    Article  Google Scholar 

  13. Page, S. E. et al. The amount of carbon released from peat and forest fires in Indonesia during 1997. Nature 420, 61–65 (1997).

    Article  Google Scholar 

  14. Cochrane, M. A. Fire science for rain forests. Nature 421, 913–919 (2003).

    Article  Google Scholar 

  15. Anshari, G., Peter Kershaw, A. & van der Kaars, S. A Late Pleistocene and Holocene pollen and charcoal record from peat swamp forest, Lake Sentarum Wildlife Reserve, West Kalimantan, Indonesia. Palaeogeogr. Palaeoclimatol. Palaeoecol. 171, 213–228 (2001).

    Article  Google Scholar 

  16. Millspaugh, S. H., Whitlock, C. & Bartlein, P. J. Variations in fire frequency and climate over the past 17000 yr in central Yellowstone National Park. Geology 28, 211–214 (2000).

    Article  Google Scholar 

  17. Millspaugh, S. H., Whitlock, C. & Bartlein, P. in After the Fires: The Ecology of Change in Yellowstone National Park (ed. Wallace, L.) 10–28 (Yale Univ. Press, New Haven, 2004).

    Book  Google Scholar 

  18. Jansen, E. et al. in Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (eds Solomon, S. et al.) 433–497 (Cambridge Univ. Press, Cambridge, 2007).

    Google Scholar 

  19. Ammann, C. M., Joos, F., Schimel, D. S., Otto-Bliesner, B. L. & Tomas, R. A. Solar influence on climate during the past millennium: Results from transient simulations with the NCAR Climate System Model. Proc. Natl Acad. Sci. USA 104, 3713–3718 (2007).

    Article  Google Scholar 

  20. Klein Goldewijk, K. & Ramankutty, N. Land cover change over the last three centuries due to human activities: The availability of new global data sets. Geojournal 61, 335–344 (2004).

    Article  Google Scholar 

  21. Savage, M. & Swetnam, T. W. Early 19th-century fire decline following sheep pasturing in a Navajo ponderosa pine forest. Ecology 71, 2374–2378 (1990).

    Article  Google Scholar 

  22. Swetnam, T. W. & Baisan, C. H. in Fire and Climate in Temperate Ecosystems of the Western Americas (eds Veblen, T. T., Baker, W. L., Montenegro, G. & Swetnam, T. W.) 158–195 (Springer, New York, 2003).

    Book  Google Scholar 

  23. Pyne, S. J. World Fire: The Culture of Fire on Earth (Univ. of Washington Press, Seattle, 1995).

    Google Scholar 

  24. Chapin, F. S. III. et al. Role of land-surface changes in Arctic summer warming. Science 310, 657–660 (2005).

    Article  Google Scholar 

  25. Girardin, M. P. Interannual to decadal changes in area burned in Canada from 1781 to 1982 and the relationship to Northern Hemisphere land temperatures. Glob. Ecol. Biogeog. 16, 557–566 (2007).

    Article  Google Scholar 

  26. Ferretti, D. F. et al. Unexpected changes to the global methane budget over the past 2000 years. Science 309, 1714–1717 (2005).

    Article  Google Scholar 

  27. Houweling, S., van der Werf, G, Klein Goldewijk, K., Röckmann, T. & Aben, I. Early anthropogenic emissions and the variation of CH4 and 13CH4 over the last millennium. Glob. Biogeochem. Cycles 22, GB1002doi:10.1029/2007GB002961 (2008).

  28. Denevan, W. N. The Native Population of Amazonia in 1492 Reconsidered (2003).

    Google Scholar 

  29. Bush, M. B., Silman, M. R., McMichael, C. & Saatchi, S. Fire, climate change and biodiversity in Amazonia: A Late-Holocene perspective. Phil. Trans. R. Soc. B 363, 1795–1802 (2008).

    Article  Google Scholar 

  30. Klein Goldewijk, K. & van Drecht, G. in Integrated Modelling of Global Environmental Change. An Overview of IMAGE 2.4 (eds Bouwman, A. F., Kram, T. & Klein Goldewijk, K.) (Netherlands Environmental Assessment Agency, Bilthoven, The Netherlands, 2006).

    Google Scholar 

  31. Thompson, L. G. et al. Tropical glacier and ice core evidence of climate change on annual to millennial time scales. Clim. Change 59, 137–155 (2003).

    Article  Google Scholar 

  32. Haug, G. H., Hughen, K. A., Sigman, D. M., Peterson, L. C. & Rohl, U. Southward migration of the intertropical convergence zone through the Holocene. Science 293, 1304–1308 (2001).

    Article  Google Scholar 

  33. McConnell, J. R. et al. 20th-century industrial black carbon emissions altered Arctic climate forcing. Science 317, 1381–1384 (2007).

    Article  Google Scholar 

  34. Oros, D. R. & Simoneit, B. R. T. Identification and emission factors of molecular tracers in organic aerosols from biomass burning Part 1. Temperate climate conifers. Appl. Geochem. 16, 1513–1544 (2001).

    Article  Google Scholar 

  35. Scholze, M., Knorr, W., Arneill, N. W. & Prentice, I. C. A climate-change risk analysis for world ecosystems. Proc. Natl Acad. Sci. USA 103, 13116 (2006).

    Article  Google Scholar 

  36. Running, S. W. Ecosystem disturbance, carbon, and climate. Science 321, 652–653 (2008).

    Article  Google Scholar 

  37. Wooller, M. J., Street-Perrott, F. A. & Agnew, A. D. Q. Late Quaternary fires and grassland palaeoecology of Mount Kenya, East Africa: Evidence from charred grass cuticles in lake sediments. Palaeogeogr. Palaeoclimatol. Palaeoecol. 164, 207–230 (2000).

    Article  Google Scholar 

  38. Stocks, B. J. & Kauffman, J. B. in Sediment Records of Biomass Burning and Global Change (eds Clark, J. S., Chachier, H., Goldammer, J. G. & Stocks, B.) 169–188 (Springer, Berlin, 1997).

    Book  Google Scholar 

  39. Cleveland, W. S. & Devlin, S. J. Locally weighted regression: An approach to regression analysis by local fitting. J. Am. Stat. Assoc. 83, 596–610 (1988).

    Article  Google Scholar 

  40. Oerlemans, J. Extracting a climate signal from 169 glacier records. Science 308, 675–677 (2005).

    Article  Google Scholar 

  41. Mann, M. & Jones, P. Global surface temperatures over the past two millennia. Geophys. Res. Lett. 30, 1820–1823 (2003).

    Google Scholar 

  42. Meure, C. M. et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett. 33, L14810 (2006).

    Article  Google Scholar 

  43. Siegenthaler, U. et al. Supporting evidence from the EPICA Dronning Maud Land ice core for atmospheric CO2 changes during the past millennium. Tellus: Series B 57, 51–57 (2005).

    Article  Google Scholar 

  44. Etheridge, D. M. et al. Natural and anthropogenic changes in atmospheric CO2 over the last 1000 years from air in Antarctic ice and firn. J. Geophys. Res. 101, 4115–4128 (1996).

    Article  Google Scholar 

  45. Prentice, I. C., Sykes, M. T. & Cramer, W. A simulation model for the transient effects of climate change on forest landscapes. Ecol. Mod. 65, 51–70 (1993).

    Article  Google Scholar 

  46. Shafer, S. L., Bartlein, P. J. & Thompson, R. S. Potential changes in the distributions of Western North America tree and shrub taxa under future climate scenarios. Ecosystems 4, 200–215 (2001).

    Article  Google Scholar 

  47. DeFries, R., Hansen, M., Townshend, J. R. G., Janetos, A. C. & Loveland, T. R. A new global 1 km data set of percent tree cover derived from remote sensing. Glob. Change Biol. 6, 247–254 (2000).

    Article  Google Scholar 

  48. Kaplan, J. O. et al. Climate change and Arctic ecosystems: 2. Modeling, paleodata-model comparisons, and future projections. J. Geophys. Res. 108, 8171 (2003).

    Article  Google Scholar 

  49. McEvedy, C. & Jones, R. Atlas of World Population History (Harmondsworth, New York, 1978).

    Google Scholar 

  50. Ruddiman, W. F. Plows, Plagues and Petroleum: How Humans Took Control of Climate (Princeton Univ. Press, Princeton, 2005).

    Google Scholar 

  51. Denevan, W. M. The Native Population of the Americas in 1492 (Univ. of Wisconsin Press, Madison, 1992).

    Google Scholar 

Download references

Acknowledgements

This article is a contribution to the Global Palaeofire Working Group (GPWG) of the International Geosphere-Biosphere Project Cross-Project Initiative on Fire. The GPWG is supported by the UK Natural Environment Research Council’s QUEST (Quantifying Uncertainty in the Earth System) programme. Data compilation and analysis were supported by the QUEST-Deglaciation project (M.J.P., S.P.H.) and by the US National Science Foundation Paleoclimatology (P.J.B.) and Geography and Regional Science programs (P.J.B. and J.R.M.). We thank our colleagues who have made these analyses possible through their contributions to the International Multiproxy Paleofire Database and the Global Charcoal Database.

Author information

Authors and Affiliations

Authors

Contributions

S.P.H. proposed the idea of a 2000 year synthesis. J.R.M, M.J.P., P.J.B., F.J. and S.P.H. compiled the data. P.J.B. carried out the analyses with assistance from P.E.H., D.G.G. and J.R.M. All authors contributed to writing the paper.

Corresponding author

Correspondence to J. R. Marlon.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1142 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Marlon, J., Bartlein, P., Carcaillet, C. et al. Climate and human influences on global biomass burning over the past two millennia. Nature Geosci 1, 697–702 (2008). https://doi.org/10.1038/ngeo313

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo313

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing