The role of surface heat fluxes in tropical intraseasonal oscillations

Abstract

The tropics sustain strong, coherent variations in wind and precipitation on the intraseasonal (30–60 day) timescale. In their active phases, these intraseasonal oscillations are characterized by the slow eastward movement of stronger-than-average precipitation and westerly winds. In northern summer, rainfall and wind anomalies also propagate northward on the intraseasonal timescale over India, southeast and east Asia and the adjacent oceans, pacing the active and break cycles of the monsoons and thus exerting a direct control on the livelihoods of large populations dependent on rain-fed agriculture. We argue that heat fluxes from ocean to atmosphere play a fundamental role in driving the intraseasonal oscillations. We also propose that the current generation of numerical models may enable us to test this and other hypotheses about the dynamics of intraseasonal oscillations more convincingly than has been done in the past.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Intraseasonal rainfall variance in the 30–90 day frequency band from the TRMM 3B42 data set (1998–2006).
Figure 2: Climatological mean rainfall from the TRMM 3B42 data set (1998–2006).

References

  1. 1

    Bessafi, M. & Wheeler, M. C. Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively-coupled equatorial waves. Mon. Weath. Rev. 134, 638–656 (2006).

    Article  Google Scholar 

  2. 2

    Mo, K. The association between intraseasonal oscillations and tropical storms in the Atlantic basin. Mon. Weath. Rev. 128, 4097–4107 (2000).

    Article  Google Scholar 

  3. 3

    Jones, C., Waliser, D. E., Lau, K. M. & Stern, W. The Madden Julian oscillation and its impact on northern hemisphere weather predictability. Mon. Weath. Rev. 132, 1462–1471 (2004).

    Article  Google Scholar 

  4. 4

    Bond, N. A. & Vecchi, G. A. On the Madden Julian oscillation and precipitation in Oregon and Washington. Weath. Forecast. 18, 600–613 (2003).

    Article  Google Scholar 

  5. 5

    McPhaden, M. J. The genesis and evolution of the 1997–98 El Nin`o. Science 283, 950–954 (1999).

    Article  Google Scholar 

  6. 6

    Webster, P. J. & Hoyos, C. Prediction of monsoon rainfall and river discharge on 15–30 day time scales. Bull. Am. Meteorol. Soc. 85, 1745–1765 (2004).

    Article  Google Scholar 

  7. 7

    Waliser, D. et al. The experimental MJO prediction project. Bull. Am. Meteorol. Soc. 87, 425–431 (2006).

    Article  Google Scholar 

  8. 8

    Vitart, F., Woolnough, S., Balmased, M. A. & Tompkins, A. M. Monthly forecast of the Madden-Julian oscillation using a coupled GCM. Mon. Weath. Rev. 135, 2700–2715 (2007).

    Article  Google Scholar 

  9. 9

    Zhang, C. et al. Simulations of the Madden-Julian Oscillation in four pairs of coupled and uncoupled models. Clim. Dyn. 27, 573–592 (2006).

    Article  Google Scholar 

  10. 10

    Lin, J. et al. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Clim. 19, 2665–2690 (2006).

    Article  Google Scholar 

  11. 11

    Madden, R. A. & Julian, P. R. Observations of the 40–50 day tropical oscillation—A review. Mon. Weath. Rev. 122, 814–837 (1994).

    Article  Google Scholar 

  12. 12

    Zhang, C. Madden–Julian oscillation. Rev. Geophys. 43, doi:10.1029/2004RG000158 (2005).

  13. 13

    Wang, B. in Intraseasonal Variability in the Atmosphere-Ocean Climate System (eds Lau, W. K. M. & Waliser, D. E.) 307–360 (Praxis Publishing, Berlin, 2005).

    Google Scholar 

  14. 14

    Waliser, D. E. in The Asian Monsoon (ed. Wang, B.) 203–257 (Springer-Praxis, Berlin, 2006).

    Google Scholar 

  15. 15

    Emanuel, K. A. An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci. 44, 2324–2340 (1987).

    Article  Google Scholar 

  16. 16

    Neelin, J. D., Held, I. M. & Cook, K. H. Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci. 44, 2341–2348 (1987).

    Article  Google Scholar 

  17. 17

    Arakawa, A. & Schubert, W. H. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci. 31, 674–701 (1974).

    Article  Google Scholar 

  18. 18

    Emanuel, K. A., Neelin, J. D. & Bretherton, C. S. On large-scale circulations in convecting atmospheres. Q. J. R. Meteorol. Soc. 120, 1111–1143 (1994).

    Article  Google Scholar 

  19. 19

    Arakawa, A. The cumulus parameterization problem: Past, present and future. J. Clim. 17, 2493–2525 (2004).

    Article  Google Scholar 

  20. 20

    Fuchs, Z. & Raymond, D. J. Large-scale modes of a nonrotating atmosphere with water vapor and cloud-radiation feedbacks. J. Atmos. Sci. 59, 1669–1679 (2002).

    Article  Google Scholar 

  21. 21

    Ramanathan, V. et al. Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment. Science 243, 57–63 (1989).

    Article  Google Scholar 

  22. 22

    Sobel, A. H. & Gildor, H. A simple time-dependent model of SST hot spots. J. Clim. 16, 3978–3992 (2003).

    Article  Google Scholar 

  23. 23

    Lindzen, R. S. Wave-CISK in the tropics. J. Atmos. Sci. 31, 156–179 (1974).

    Article  Google Scholar 

  24. 24

    Wang, B. Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci. 45, 2051–2065 (1988).

    Article  Google Scholar 

  25. 25

    Moskowitz, B. M. & Bretherton, C. S. An analysis of frictional feedback on a moist equatorial kelvin mode. J. Atmos. Sci. 57, 2188–2206 (2000).

    Article  Google Scholar 

  26. 26

    Kiladis, G. N., Meehl, G. A. & Weickmann, K. M. Large-scale circulation associated with westerly wind bursts and deep convection over the western equatorial Pacific. J. Geophys. Res. 99, 18527–18544 (1994).

    Article  Google Scholar 

  27. 27

    Zhang, C. & McPhaden, M. Intraseasonal surface cooling in the equatorial western Pacific. J. Clim. 13, 2261–2276 (2000).

    Article  Google Scholar 

  28. 28

    Wheeler, M. & Kiladis, G. N. Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. 56, 374–399 (1999).

    Article  Google Scholar 

  29. 29

    Shinoda, T., Hendon, H. H. & Glick, J. Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian oceans. J. Clim. 11, 1685–1702 (1998).

    Article  Google Scholar 

  30. 30

    Araligidad, N. M. & Maloney, E. D. Wind-driven latent heat flux and the intraseasonal oscillation. Geophys. Res. Lett. 35, L04815 (2008).

    Article  Google Scholar 

  31. 31

    Adler, R. F., Huffman, G. J., Bolvin, D. T., Curtis, S. & Nelkin, E. J. Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J. Appl. Meteorol. 39, 2007–2023 (2000).

    Article  Google Scholar 

  32. 32

    Zhang, C. D. & Hendon, H. H. Propagating and standing components of the intraseasonal oscillation in tropical convection. J. Atmos. Sci. 54, 741–752 (1997).

    Article  Google Scholar 

  33. 33

    Fasullo, J. & Webster, P. J. Warm pool SST variability in relation to the surface energy balance. J. Clim. 12, 1292–1305 (1999).

    Article  Google Scholar 

  34. 34

    Sperber, K. R. Madden–Julian variability in NCAR CAM2.0 and CCSM2.0. Clim. Dyn. 23, 259–278 (2004).

    Article  Google Scholar 

  35. 35

    Qian, J.-H. Why precipitation is mostly concentrated over islands in the maritime continent. J. Atmos. Sci. 62, 1428–1441 (2008).

    Article  Google Scholar 

  36. 36

    Hoyos, C. D. & Webster, P. J. The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Clim. 20, 4402–4424 (2007).

    Article  Google Scholar 

  37. 37

    Waliser, D. E. Formation and limiting mechanisms for very high sea surface temperature: Linking the dynamics and the thermodynamics. J. Clim. 9, 161–188 (1996).

    Article  Google Scholar 

  38. 38

    Stephens, G. L., Webster, P. J., Johnson, R. H., Engelen, R. & L’Ecuyer, T. Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Clim. 17, 2213–2224 (2004).

    Article  Google Scholar 

  39. 39

    Neelin, J. D. & Zeng, N. A quasi-equilibrium tropical circulation model—formulation. J. Atmos. Sci. 57, 1741–1766 (2000).

    Article  Google Scholar 

  40. 40

    Maloney, E. D. & Sobel, A. H. Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Clim. 17, 4368–4386 (2004).

    Article  Google Scholar 

  41. 41

    Lin, J. W.-B., Neelin, J. D. & Zeng, N. Maintenance of tropical intraseasonal variability: Impact of evaporation-wind feedback and midlatitude storms. J. Atmos. Sci. 57, 2793–2823 (2000).

    Article  Google Scholar 

  42. 42

    Miura, H., Satoh, M., Nasuno, T., Noda, A. T. & Oouchi, K. A Madden–Julian oscillation event realistically simulated by a global cloud-resolving model. Science 318, 1763–1765 (2007).

    Article  Google Scholar 

  43. 43

    Grabowski, W. W. MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci. 60, 847–864 (2003).

    Article  Google Scholar 

  44. 44

    Khairoutdinov, M., DeMott, C. & Randall, D. A. Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU multiscale modeling framework. J. Clim. 21, 413–431 (2008).

    Article  Google Scholar 

  45. 45

    Goswami, B. N. in Intraseasonal Variability in the Atmosphere–Ocean Climate System (eds Lau, W. K. M. & Waliser, D. E.) 19–61 (Springer, Berlin, 2005).

    Google Scholar 

  46. 46

    Bellon, G. & Sobel, A. H. Poleward-propagating intraseasonal monsoon disturbances in an intermediate-complexity axisymmetric model. J. Atmos. Sci. 65, 470–489 (2008).

    Article  Google Scholar 

  47. 47

    Bellon, G. & Sobel, A. H. Instability of the axisymmetric monsoon flow and intraseasonal oscillation. J. Geophys. Res. 113, D07109 (2008).

    Article  Google Scholar 

  48. 48

    Drbohlav, H.-K. & Wang, B. Mechanism of the northward-propagating intraseasonal oscillation: Insights from a zonally symmetric model. J. Clim. 18, 952–972 (2005).

    Article  Google Scholar 

  49. 49

    Klingaman, N. P., Inness, P. M., Weller, H. & Slingo, J. M. The importance of high-frequency sea-surface temperature variability to the intraseasonal oscillation of Indian Monsoon Rainfall. J. Clim. 21, doi:10.1175/2008JCLI2329.1 (2008).

  50. 50

    Bellon, G., Sobel, A. H. & Vialard, J. Ocean-atmosphere coupling in the monsoon intraseasonal oscillation: A simple model study. J. Clim. 21, doi:10.1175/2008JCLI2305.1 (2008).

Download references

Acknowledgements

This paper was written while the first author was on sabbatical at the Australian Bureau of Meteorology, and he thanks M. Wheeler, H. Hendon, H. Zhu, S. Cleland and L. Chappell for stimulating discussions on the MJO. This work was supported by the Climate and Large-Scale Dynamics Program of the National Science Foundation under grants ATM-0832868 (E.D.M.) and ATM-054273 (A.H.S.), by the Precipitation Measurement Mission program of the National Aeronautics and Space Administration under grant NNX07AD21G (A.H.S.) and by award NA05OAR4310006 from the National Oceanic and Atmospheric Administration, US Department of Commerce (E.D.M.). The statements, findings, conclusions and recommendations do not necessarily reflect the views of NSF, NASA, NOAA or of the Department of Commerce.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Adam H. Sobel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sobel, A., Maloney, E., Bellon, G. et al. The role of surface heat fluxes in tropical intraseasonal oscillations. Nature Geosci 1, 653–657 (2008). https://doi.org/10.1038/ngeo312

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing