The role of surface heat fluxes in tropical intraseasonal oscillations

Article metrics


The tropics sustain strong, coherent variations in wind and precipitation on the intraseasonal (30–60 day) timescale. In their active phases, these intraseasonal oscillations are characterized by the slow eastward movement of stronger-than-average precipitation and westerly winds. In northern summer, rainfall and wind anomalies also propagate northward on the intraseasonal timescale over India, southeast and east Asia and the adjacent oceans, pacing the active and break cycles of the monsoons and thus exerting a direct control on the livelihoods of large populations dependent on rain-fed agriculture. We argue that heat fluxes from ocean to atmosphere play a fundamental role in driving the intraseasonal oscillations. We also propose that the current generation of numerical models may enable us to test this and other hypotheses about the dynamics of intraseasonal oscillations more convincingly than has been done in the past.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Intraseasonal rainfall variance in the 30–90 day frequency band from the TRMM 3B42 data set (1998–2006).
Figure 2: Climatological mean rainfall from the TRMM 3B42 data set (1998–2006).


  1. 1

    Bessafi, M. & Wheeler, M. C. Modulation of south Indian Ocean tropical cyclones by the Madden–Julian oscillation and convectively-coupled equatorial waves. Mon. Weath. Rev. 134, 638–656 (2006).

  2. 2

    Mo, K. The association between intraseasonal oscillations and tropical storms in the Atlantic basin. Mon. Weath. Rev. 128, 4097–4107 (2000).

  3. 3

    Jones, C., Waliser, D. E., Lau, K. M. & Stern, W. The Madden Julian oscillation and its impact on northern hemisphere weather predictability. Mon. Weath. Rev. 132, 1462–1471 (2004).

  4. 4

    Bond, N. A. & Vecchi, G. A. On the Madden Julian oscillation and precipitation in Oregon and Washington. Weath. Forecast. 18, 600–613 (2003).

  5. 5

    McPhaden, M. J. The genesis and evolution of the 1997–98 El Nin`o. Science 283, 950–954 (1999).

  6. 6

    Webster, P. J. & Hoyos, C. Prediction of monsoon rainfall and river discharge on 15–30 day time scales. Bull. Am. Meteorol. Soc. 85, 1745–1765 (2004).

  7. 7

    Waliser, D. et al. The experimental MJO prediction project. Bull. Am. Meteorol. Soc. 87, 425–431 (2006).

  8. 8

    Vitart, F., Woolnough, S., Balmased, M. A. & Tompkins, A. M. Monthly forecast of the Madden-Julian oscillation using a coupled GCM. Mon. Weath. Rev. 135, 2700–2715 (2007).

  9. 9

    Zhang, C. et al. Simulations of the Madden-Julian Oscillation in four pairs of coupled and uncoupled models. Clim. Dyn. 27, 573–592 (2006).

  10. 10

    Lin, J. et al. Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals. J. Clim. 19, 2665–2690 (2006).

  11. 11

    Madden, R. A. & Julian, P. R. Observations of the 40–50 day tropical oscillation—A review. Mon. Weath. Rev. 122, 814–837 (1994).

  12. 12

    Zhang, C. Madden–Julian oscillation. Rev. Geophys. 43, doi:10.1029/2004RG000158 (2005).

  13. 13

    Wang, B. in Intraseasonal Variability in the Atmosphere-Ocean Climate System (eds Lau, W. K. M. & Waliser, D. E.) 307–360 (Praxis Publishing, Berlin, 2005).

  14. 14

    Waliser, D. E. in The Asian Monsoon (ed. Wang, B.) 203–257 (Springer-Praxis, Berlin, 2006).

  15. 15

    Emanuel, K. A. An air–sea interaction model of intraseasonal oscillations in the tropics. J. Atmos. Sci. 44, 2324–2340 (1987).

  16. 16

    Neelin, J. D., Held, I. M. & Cook, K. H. Evaporation-wind feedback and low-frequency variability in the tropical atmosphere. J. Atmos. Sci. 44, 2341–2348 (1987).

  17. 17

    Arakawa, A. & Schubert, W. H. Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci. 31, 674–701 (1974).

  18. 18

    Emanuel, K. A., Neelin, J. D. & Bretherton, C. S. On large-scale circulations in convecting atmospheres. Q. J. R. Meteorol. Soc. 120, 1111–1143 (1994).

  19. 19

    Arakawa, A. The cumulus parameterization problem: Past, present and future. J. Clim. 17, 2493–2525 (2004).

  20. 20

    Fuchs, Z. & Raymond, D. J. Large-scale modes of a nonrotating atmosphere with water vapor and cloud-radiation feedbacks. J. Atmos. Sci. 59, 1669–1679 (2002).

  21. 21

    Ramanathan, V. et al. Cloud-radiative forcing and climate: Results from the Earth radiation budget experiment. Science 243, 57–63 (1989).

  22. 22

    Sobel, A. H. & Gildor, H. A simple time-dependent model of SST hot spots. J. Clim. 16, 3978–3992 (2003).

  23. 23

    Lindzen, R. S. Wave-CISK in the tropics. J. Atmos. Sci. 31, 156–179 (1974).

  24. 24

    Wang, B. Dynamics of tropical low-frequency waves: An analysis of the moist Kelvin wave. J. Atmos. Sci. 45, 2051–2065 (1988).

  25. 25

    Moskowitz, B. M. & Bretherton, C. S. An analysis of frictional feedback on a moist equatorial kelvin mode. J. Atmos. Sci. 57, 2188–2206 (2000).

  26. 26

    Kiladis, G. N., Meehl, G. A. & Weickmann, K. M. Large-scale circulation associated with westerly wind bursts and deep convection over the western equatorial Pacific. J. Geophys. Res. 99, 18527–18544 (1994).

  27. 27

    Zhang, C. & McPhaden, M. Intraseasonal surface cooling in the equatorial western Pacific. J. Clim. 13, 2261–2276 (2000).

  28. 28

    Wheeler, M. & Kiladis, G. N. Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci. 56, 374–399 (1999).

  29. 29

    Shinoda, T., Hendon, H. H. & Glick, J. Intraseasonal variability of surface fluxes and sea surface temperature in the tropical western Pacific and Indian oceans. J. Clim. 11, 1685–1702 (1998).

  30. 30

    Araligidad, N. M. & Maloney, E. D. Wind-driven latent heat flux and the intraseasonal oscillation. Geophys. Res. Lett. 35, L04815 (2008).

  31. 31

    Adler, R. F., Huffman, G. J., Bolvin, D. T., Curtis, S. & Nelkin, E. J. Tropical rainfall distributions determined using TRMM combined with other satellite and rain gauge information. J. Appl. Meteorol. 39, 2007–2023 (2000).

  32. 32

    Zhang, C. D. & Hendon, H. H. Propagating and standing components of the intraseasonal oscillation in tropical convection. J. Atmos. Sci. 54, 741–752 (1997).

  33. 33

    Fasullo, J. & Webster, P. J. Warm pool SST variability in relation to the surface energy balance. J. Clim. 12, 1292–1305 (1999).

  34. 34

    Sperber, K. R. Madden–Julian variability in NCAR CAM2.0 and CCSM2.0. Clim. Dyn. 23, 259–278 (2004).

  35. 35

    Qian, J.-H. Why precipitation is mostly concentrated over islands in the maritime continent. J. Atmos. Sci. 62, 1428–1441 (2008).

  36. 36

    Hoyos, C. D. & Webster, P. J. The role of intraseasonal variability in the nature of Asian monsoon precipitation. J. Clim. 20, 4402–4424 (2007).

  37. 37

    Waliser, D. E. Formation and limiting mechanisms for very high sea surface temperature: Linking the dynamics and the thermodynamics. J. Clim. 9, 161–188 (1996).

  38. 38

    Stephens, G. L., Webster, P. J., Johnson, R. H., Engelen, R. & L’Ecuyer, T. Observational evidence for the mutual regulation of the tropical hydrological cycle and tropical sea surface temperatures. J. Clim. 17, 2213–2224 (2004).

  39. 39

    Neelin, J. D. & Zeng, N. A quasi-equilibrium tropical circulation model—formulation. J. Atmos. Sci. 57, 1741–1766 (2000).

  40. 40

    Maloney, E. D. & Sobel, A. H. Surface fluxes and ocean coupling in the tropical intraseasonal oscillation. J. Clim. 17, 4368–4386 (2004).

  41. 41

    Lin, J. W.-B., Neelin, J. D. & Zeng, N. Maintenance of tropical intraseasonal variability: Impact of evaporation-wind feedback and midlatitude storms. J. Atmos. Sci. 57, 2793–2823 (2000).

  42. 42

    Miura, H., Satoh, M., Nasuno, T., Noda, A. T. & Oouchi, K. A Madden–Julian oscillation event realistically simulated by a global cloud-resolving model. Science 318, 1763–1765 (2007).

  43. 43

    Grabowski, W. W. MJO-like coherent structures: Sensitivity simulations using the cloud-resolving convection parameterization (CRCP). J. Atmos. Sci. 60, 847–864 (2003).

  44. 44

    Khairoutdinov, M., DeMott, C. & Randall, D. A. Evaluation of the simulated interannual and subseasonal variability in an AMIP-style simulation using the CSU multiscale modeling framework. J. Clim. 21, 413–431 (2008).

  45. 45

    Goswami, B. N. in Intraseasonal Variability in the Atmosphere–Ocean Climate System (eds Lau, W. K. M. & Waliser, D. E.) 19–61 (Springer, Berlin, 2005).

  46. 46

    Bellon, G. & Sobel, A. H. Poleward-propagating intraseasonal monsoon disturbances in an intermediate-complexity axisymmetric model. J. Atmos. Sci. 65, 470–489 (2008).

  47. 47

    Bellon, G. & Sobel, A. H. Instability of the axisymmetric monsoon flow and intraseasonal oscillation. J. Geophys. Res. 113, D07109 (2008).

  48. 48

    Drbohlav, H.-K. & Wang, B. Mechanism of the northward-propagating intraseasonal oscillation: Insights from a zonally symmetric model. J. Clim. 18, 952–972 (2005).

  49. 49

    Klingaman, N. P., Inness, P. M., Weller, H. & Slingo, J. M. The importance of high-frequency sea-surface temperature variability to the intraseasonal oscillation of Indian Monsoon Rainfall. J. Clim. 21, doi:10.1175/2008JCLI2329.1 (2008).

  50. 50

    Bellon, G., Sobel, A. H. & Vialard, J. Ocean-atmosphere coupling in the monsoon intraseasonal oscillation: A simple model study. J. Clim. 21, doi:10.1175/2008JCLI2305.1 (2008).

Download references


This paper was written while the first author was on sabbatical at the Australian Bureau of Meteorology, and he thanks M. Wheeler, H. Hendon, H. Zhu, S. Cleland and L. Chappell for stimulating discussions on the MJO. This work was supported by the Climate and Large-Scale Dynamics Program of the National Science Foundation under grants ATM-0832868 (E.D.M.) and ATM-054273 (A.H.S.), by the Precipitation Measurement Mission program of the National Aeronautics and Space Administration under grant NNX07AD21G (A.H.S.) and by award NA05OAR4310006 from the National Oceanic and Atmospheric Administration, US Department of Commerce (E.D.M.). The statements, findings, conclusions and recommendations do not necessarily reflect the views of NSF, NASA, NOAA or of the Department of Commerce.

Author information

Correspondence to Adam H. Sobel.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sobel, A., Maloney, E., Bellon, G. et al. The role of surface heat fluxes in tropical intraseasonal oscillations. Nature Geosci 1, 653–657 (2008) doi:10.1038/ngeo312

Download citation

Further reading