Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans

Article metrics


Precambrian banded iron formations provide an extensive archive of pivotal environmental changes and the evolution of biological processes on early Earth. The formations are characterized by bands ranging from micrometre- to metre-scale layers of alternating iron- and silica-rich minerals. However, the nature of the mechanisms of layer formation is unknown. To properly evaluate this archive, the physical, chemical and/or biological triggers for the deposition of both the iron- and silica-rich layers, and crucially their alternate banding, must be identified. Here we use laboratory experiments and geochemical modelling to study the potential for a microbial mechanism in the formation of alternating iron–silica bands. We find that the rate of biogenic iron(III) mineral formation by iron-oxidizing microbes reaches a maximum between 20 and 25 C. Decreasing or increasing water temperatures slow microbial iron mineral formation while promoting abiotic silica precipitation. We suggest that natural fluctuations in the temperature of the ocean photic zone during the period when banded iron formations were deposited could have led to the primary layering observed in these formations by successive cycles of microbially catalysed iron(III) mineral deposition and abiotic silica precipitation.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Temperature change drives both the biotic precipitation of Fe(III) minerals and the abiotic precipitation of silica.
Figure 2: Possible deposition of alternating iron and silicate mineral layers in BIFs as triggered by temperature variations in ocean waters.


  1. 1

    Trendall, A. F. The significance of iron-formation in the Precambrian stratigraphic record. Int. Assoc. Sedimentol. Spec. Publ. 33, 33–66 (2002).

  2. 2

    Klein, C. Some Precambrian banded iron formations (BIFs) from around the world: Their age, geologic setting, mineralogy, metamorphism, geochemistry, and origin. Am. Mineral. 90, 1473–1499 (2005).

  3. 3

    Trendall, A. F. Three great basins of Precambrian banded iron formation deposition: A systematic comparison. Geol. Soc. Am. Bull. 79, 1527–1544 (1968).

  4. 4

    Morris, R.C & Horwitz, R. C. The origin of the iron-formation-rich Hamersley Group of Western Australia—deposition on a platform. Precambr. Res. 21, 273–297 (1983).

  5. 5

    Holland, H. D. The oceans: A possible source of iron in iron-formations. Econ. Geol. 68, 1169–1172 (1973).

  6. 6

    Morris, R. C. Genetic modelling for banded iron-formation of the Hamersley Group, Pilbara Craton, Western Australia. Precambr. Res. 60, 243–286 (1993).

  7. 7

    Maliva, R. G., Knoll, A. H. & Simonson, B. M. Secular change in the Precambrian silica cycle: Insights from chert petrology. Geol. Soc. Am. Bull. 117, 835–845 (2005).

  8. 8

    Cloud, P. Atmospheric and hydrospheric evolution on the primitive Earth. Science 160, 729–736 (1968).

  9. 9

    Holland, H. D. Vocanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

  10. 10

    Braterman, P. S., Cairns-Smith, A. G. & Sloper, R. W. Photo-oxidation of hydrated Fe2+—significance for banded iron formations. Nature 303, 163–164 (1983).

  11. 11

    Konhauser, K. O. et al. Decoupling photochemical Fe(II) oxidation from shallow-water BIF deposition. Earth Planet. Sci. Lett. 258, 87–100 (2007).

  12. 12

    Weber, K. A., Achenbach, L. A. & Coates, J. D. Microorganisms pumping iron: Anaerobic microbial iron oxidation and reduction. Nature Rev. 4, 752–764 (2006).

  13. 13

    Widdel, F. et al. Ferrous iron oxidation by anoxygenic phototrophic bacteria. Nature 362, 834–836 (1993).

  14. 14

    Heising, S., Richter, L., Ludwig, W. & Schink, B. Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a Geospirillum sp. strain. Arch Microbiol. 172, 116–124 (1999).

  15. 15

    Straub, K. L., Rainey, F. R. & Widdel, F. Rhodovulum iodosum sp. nov. and Rhodovulum robiginosum sp. nov., two new marine phototrophic ferrous-iron-oxidizing purple bacteria. Int. J. Syst. Bacteriol. 49, 729–735 (1999).

  16. 16

    Konhauser, K. O. et al. Could bacteria have formed the Precambrian banded iron formations? Geology 30, 1079–1082 (2002).

  17. 17

    Kappler, A., Pasquero, C., Konhauser, K. O. & Newman, D. K. Deposition of banded iron formations by anoxygenic phototrophic Fe(II)-oxidizing bacteria. Geology 33, 865–868 (2005).

  18. 18

    Hegler, F., Posth, N. R., Jiang, J. & Kappler, A. Physiology of phototrophic iron(II)-oxidizing bacteria-implications for modern and ancient environments. FEMS Microbiol. Ecol. (in the press).

  19. 19

    Kappler, A. & Newman, D. K. Formation of Fe (III) minerals by Fe(II) oxidizing photoautotrophic bacteria. Geochim. Cosmochim. Acta 68, 1217–1226 (2004).

  20. 20

    Konhauser, K., Newman, D. K. & Kappler, A. The potential significance of microbial Fe(III) reduction during deposition of Precambrian banded iron formations. Geobiology 3, 167–177 (2005).

  21. 21

    Walker, J. C. G. Suboxic diagenesis in banded iron formations. Nature 309, 340–342 (1984).

  22. 22

    Baur, M. E., Hayes, J. M., Studley, S. A. & Walter, M. R. Millimeter-scale variations of stable isotope abundances in carbonates from banded iron formations in the Hamersley Group of Western Australia. Econ. Geol. 80, 270–282 (1985).

  23. 23

    Johnson, C. M., Beard, B. L., Klein, C., Beukes, N. J. & Roden, E. E. Iron isotopes constrain biologic and abiologic processes in banded iron formation genesis. Geochim. Cosmochim. Acta 72, 151–169 (2008).

  24. 24

    Xiong, J. Photosynthesis: What colour was its origin? Genome Biol. 7, 245.1–245.5 (2006).

  25. 25

    Papineau, D., Walker, J. J., Mojzsis, S. J. & Pace, N. R. Composition and structure of microbial communities from stromatolites of Hamelin pool in Shark Bay, Western Australia. Appl. Environ. Microbiol. 71, 4822–4832 (2005).

  26. 26

    Bosak, T., Greene, S. E. & Newman, D. K. A likely role for anoxygenic photosynthetic microbes in the formation of ancient stromatolites. Geobiology 5, 119–126 (2007).

  27. 27

    Brocks, J. J. et al. Biomarker evidence for green and purple sulphur bacteria in a stratified Palaeoproterozoic sea. Nature 437, 866–870 (2005).

  28. 28

    Rashby, S. E., Sessions, A. L., Summons, R. E. & Newman, D. K. Biosynthesis of 2-methylbacteriohopanepolyols by an anoxygenic phototroph. Proc. Natl Acad. Sci. USA 104, 15099–15104 (2007).

  29. 29

    Knauth, P. L. & Donald, R. Lowe. High Archaen climatic temperature inferred from oxygen isotope geochemistry of cherts in the 3.5 Ga Swaziland Supergroup, South Africa. Geol. Soc. Am. Bull. 115, 566–580 (2003).

  30. 30

    Knauth, L. P. Temperature and salinity history of the Precambrian Ocean: Implications for the course of microbial evolution. Palaeogeogr. Palaeoclimatol. Palaeoecol. 219, 53–69 (2005).

  31. 31

    Robert, F. & Chaussidon, M. A Paleotemperature curve for the Precambrian oceans based on silicon isotopes in cherts. Nature 443, 969–972 (2006).

  32. 32

    Kasting, J. F. et al. Paleoclimates, ocean depth, and the oxygen isotopic composition of seawater. Earth Planet. Sci. Lett. 252, 82–93 (2006).

  33. 33

    Jaffres, J. B. D., Shields, G. A. & Wallmann, K. The oxygen isotope evolution of seawater: A critical review of a long-standing controversy and an improved geological water cycle model for the past 3.4 billion years. Earth Sci. Rev. 83, 83–122 (2007).

  34. 34

    Shields, G. A. & Kasting, J. Evidence for hot early oceans? Nature 447, E1–E2 (2007).

  35. 35

    Konhauser, K. O., Lalonde, S. V., Amskold, L. & Holland, H. Was there really an Archean phosphate crisis? Science 315, 1234 (2007).

  36. 36

    Gross, G. A. Primary features in cherty iron-formations. Sedim. Geol. 7, 241–261 (1971).

  37. 37

    Siever, R. The silica cycle in the Precambrian. Geochim. Cosmochim. Acta 56, 3265–3272 (1992).

  38. 38

    Laskar, J. & Robutel, P. The chaotic obliquity of the planets. Nature 361, 608–612 (1993).

  39. 39

    Emery, W. J., Talley, L. D. & Pickard, G. L. Descriptive Physical Oceanography (Elsevier, Amsterdam, 2006).

  40. 40

    Garrels, R. M. A model for the deposition of the microbanded Precambrian iron formations. Am. J. Sci. 287, 81–105 (1987).

  41. 41

    Ehrenreich, A. & Widdel, F. Anaerobic oxidation of ferrous iron by purple bacteria, a new type of phototrophic metabolism. Appl. Environ. Microbiol. 60, 4517–4526 (1994).

  42. 42

    Stookey, L. L. Ferrozine—a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781 (1970).

  43. 43

    Eaton, A., Clescerl, L., Rice, E. & Greenberg, A. (eds) Standard Methods for the Examination of Waters and Wastewaters 21st edn (American Public Health Association, Washington, 2005).

Download references


This research was supported by an Emmy-Noether fellowship and a research grant (KA 1736/4-1) from the German Research Foundation (DFG) to A.K. and the International PhD program GeoEnviron funded by the German Academic Exchange Service (DAAD) to N.R.P., as well as a Natural Science and Engineering Research Council (NSERC) Discovery Grant to K.O.K. We would like to thank M. Kucera and M. Siccha for their help with oceanographic data. The synchrotron-based computer tomography imaging shown in the Supplementary Information was carried out at the Swiss Light Source, Paul Scherrer Institute, Villigen, Switzerland with the help of M. Stampanoni and F. Marone. B. Schink, B. Kopp, D. Newman, J. Kasting, J. Wisdom, C. Johnson, P. Knauth, G. Neukum, S. Jordan, U. Bastian and C. Pasquero helped us immensely with their comments, which greatly improved the quality of the manuscript.

Author information

Correspondence to Andreas Kappler.

Supplementary information

Supplementary Information

Supplementary figures S1-S7 (PDF 1166 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Posth, N., Hegler, F., Konhauser, K. et al. Alternating Si and Fe deposition caused by temperature fluctuations in Precambrian oceans. Nature Geosci 1, 703–708 (2008) doi:10.1038/ngeo306

Download citation

Further reading