Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone

Abstract

Water is carried by subducting slabs as a pore fluid and in structurally bound minerals, yet no comprehensive quantification of water content and how it is stored and distributed at depth within incoming plates exists for any segment of the global subduction system. Here we use seismic data to quantify the amount of pore and structurally bound water in the Juan de Fuca plate entering the Cascadia subduction zone. Specifically, we analyse these water reservoirs in the sediments, crust and lithospheric mantle, and their variations along the central Cascadia margin. We find that the Juan de Fuca lower crust and mantle are drier than at any other subducting plate, with most of the water stored in the sediments and upper crust. Variable but limited bend faulting along the margin limits slab access to water, and a warm thermal structure resulting from a thick sediment cover and young plate age prevents significant serpentinization of the mantle. The dryness of the lower crust and mantle indicates that fluids that facilitate episodic tremor and slip must be sourced from the subducted upper crust, and that decompression rather than hydrous melting must dominate arc magmatism in central Cascadia. Additionally, dry subducted lower crust and mantle can explain the low levels of intermediate-depth seismicity in the Juan de Fuca slab.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Subduction flux of water and seismicity of Cascadia and adjacent oceanic plates.
Figure 2: Vp structure of the JdF plate seaward from the CDF.
Figure 3: Water content of the JdF plate seaward from the CDF.

Similar content being viewed by others

References

  1. van Keken, P. E., Hacker, B. R., Syracuse, E. M. & Abers, G. A. Subduction factory: 4. Depth-dependent flux of H2O from subducting slabs worldwide. J. Geophys. Res. 116, B01401 (2011).

    Article  Google Scholar 

  2. Hacker, B. R. H2O subduction beyond arcs. Geochem. Geophys. Geosyst. 9, Q03001 (2008).

    Article  Google Scholar 

  3. Alt, J. C., Honnorez, J., Laverne, C. & Emmerman, R. Hydrothermal alteration of a 1 km section through the upper oceanic crust, Deep Sea Drilling Project Hole 504B: mineralogy, chemistry, and evolution of sea-water-basalt interactions. J. Geophys. Res. 91, 10309–10335 (1986).

    Article  Google Scholar 

  4. Billen, M. I. & Gurnis, M. A low viscosity wedge in subduction zones. Earth Planet. Sci. Lett. 193, 227–236 (2001).

    Article  Google Scholar 

  5. Tatsumi, Y. Migration of fluid phases and genesis of basalt magmas in subduction zones. J. Geophys. Res. 94, 4697–4707 (1989).

    Article  Google Scholar 

  6. Magee, M. E. & Zoback, M. D. Evidence for a weak intraplate thrust fault along the northern Japan subduction zone and implications for the mechanics of thrust faulting and fluid expulsion. Geology 21, 809–812 (1993).

    Article  Google Scholar 

  7. Jarrard, R. D. Subduction fluxes of water, carbon dioxide, chlorine, and potassium. Geochem. Geophys. Geosyst. 4, 8905 (2003).

    Article  Google Scholar 

  8. Korenaga, J. On the extent of mantle hydration caused by plate bending. Earth Planet. Sci. Lett. 457, 1–9 (2017).

    Article  Google Scholar 

  9. Wilson, D. S. in The Cascadia Subduction Zone and Related Subduction Systems. Seismic Structure, Intraslab Earthquakes and Processes, and Earthquake Hazards (eds Kirby, S., Wang, K. & Dunlop, S.) 9–12 (US Geological Survey, Geological Survey of Canada, 2002).

    Google Scholar 

  10. Wada, I. & Wang, K. Common depth of slab-mantle decoupling: reconciling diversity and uniformity of subduction zones. Geochem. Geophys. Geosyst. 10, Q10009 (2009).

    Article  Google Scholar 

  11. Malvoisin, B., Brunet, F., Carlut, J., Rouméjon, S. & Cannat, M. Serpentinization of oceanic peridotites: 2. Kinetics and processes of San Carlos olivine hydrothermal alteration. J. Geophys. Res. 117, B04102 (2012).

    Google Scholar 

  12. Bostock, M. G., Hyndman, R. D., Rondenay, S. & Peacock, S. M. An inverted continental Moho and serpentinization of the forearc mantle. Nature 417, 536–538 (2002).

    Article  Google Scholar 

  13. Audet, P., Bostock, M. G., Christensen, N. I. & Peacock, S. M. Seismic evidence for overpressured subducted oceanic crust and megathrust fault sealing. Nature 457, 76–78 (2009).

    Article  Google Scholar 

  14. Gao, X. & Wang, K. Rheological separation of the megathrust seismogenic zone and episodic tremor and slip. Nature 543, 416–419 (2017).

    Article  Google Scholar 

  15. Preston, L. A., Creager, K. C., Crosson, R. S., Brocher, T. M. & Trehu, A. M. Intraslab earthquakes: dehydration of the Cascadia slab. Science 302, 1197–1200 (2003).

    Article  Google Scholar 

  16. McGary, R. S., Evans, R. L., Wannamaker, P. E., Elsenbeck, J. & Rondenay, S. Pathway from subducting slab to surface for melt and fluids beneath Mount Rainier. Nature 511, 338–340 (2014).

    Article  Google Scholar 

  17. Walowski, K. J., Wallace, P. J., Hauri, E. H., Wada, I. & Clynne, M. A. Slab melting beneath the Cascade Arc driven by dehydration of altered oceanic peridotite. Nat. Geosci. 8, 404–408 (2015).

    Article  Google Scholar 

  18. Horning, G. et al. A 2-D tomographic model of the Juan de Fuca plate from accretion at axial seamount to subduction at the Cascadia margin from an active source OBS survey. J. Geophys. Res. 121, 5859–5879 (2016).

    Article  Google Scholar 

  19. Nedimović, M. R. et al. Upper crustal evolution across the Juan de Fuca Ridge flanks. Geochem. Geophys. Geosyst. 9, Q09006 (2008).

    Article  Google Scholar 

  20. Nedimović, M. R., Bohnenstiehl, D. R., Carbotte, S. M., Canales, J. P. & Dziak, R. P. Faulting and hydration of the Juan de Fuca plate system. Earth Planet. Sci. Lett. 284, 94–102 (2009).

    Article  Google Scholar 

  21. Newman, K. R., Nedimović, M. R., Canales, J. P. & Carbotte, S. M. Evolution of seismic layer 2B across the Juan de Fuca Ridge from hydrophone streamer 2D traveltime tomography. Geochem. Geophys. Geosyst. 12, Q05009 (2011).

    Article  Google Scholar 

  22. Wang, K., He, J. & Davis, E. E. Transform push, oblique subduction resistance, and intraplate stress of the Juan de Fuca plate. J. Geophys. Res. 102, 661–674 (1997).

    Article  Google Scholar 

  23. Govers, R. & Meijer, P. T. On the dynamics of the Juan de Fuca plate. Earth Planet. Sci. Lett. 189, 115–131 (2001).

    Article  Google Scholar 

  24. Han, S. et al. Seismic reflection imaging of the Juan de Fuca plate from ridge to trench; new constraints on the distribution of faulting and evolution of the crust prior to subduction. J. Geophys. Res. 121, 1849–1872 (2016).

    Article  Google Scholar 

  25. Kuster, G. T. & Toksöz, M. N. Velocity and attenuation of seismic waves in two-phase media: Part I. Theoretical formulations. Geophysics 39, 587–606 (1974).

    Article  Google Scholar 

  26. MacKay, M. E. Structural variation and landward vergence at the toe of the Oregon prism. Tectonics 14, 1309–1320 (1995).

    Article  Google Scholar 

  27. Adam, J., Klaeschen, D., Kukowski, N. & Flueh, E. R. Upward delamination of Cascadia Basin sediment infill with landward frontal accretion thrusting caused by rapid glacial age material flux. Tectonics 23, TC3009 (2004).

    Article  Google Scholar 

  28. Booth-Rea, G., Klaeschen, D., Grevemeyer, I. & Reston, T. Heterogeneous deformation in the Cascadia convergent margin and its relation to thermal gradient (Washington, NW USA). Tectonics 27, TC4005 (2008).

    Article  Google Scholar 

  29. Grevemeyer, I. et al. Heat flow and bending-related faulting at subduction trenches: case studies offshore of Nicaragua and Central Chile. Earth Planet. Sci. Lett. 236, 238–248 (2005).

    Article  Google Scholar 

  30. Ranero, C. R., Phipps Morgan, J., McIntosh, K. & Reichert, C. Bending-related faulting and mantle serpentinization at the Middle America trench. Nature 425, 367–373 (2003).

    Article  Google Scholar 

  31. Goldfinger, C. et al. The importance of site selection, sediment supply, and hydrodynamics: a case study of submarine paleoseismology on the northern Cascadia margin, Washington USA. Mar. Geol. 384, 4–46 (2017).

    Article  Google Scholar 

  32. Poli, P., Maksymowicz, A. & Ruiz, S. The Mw8.3 Illapel earthquake (Chile): preseismic and postseismic activity associated with hydrated slab structures. Geology 45, 247–250 (2017).

    Article  Google Scholar 

  33. Wang, K. & Tréhu, A. M. Invited review paper: some outstanding issues in the study of great megathrust earthquakes—the Cascadia example. J. Geodyn. 98, 1–18 (2016).

    Article  Google Scholar 

  34. Audet, P., Bostock, M. G., Boyarko, D. C., Brudzinski, M. R. & Allen, R. M. Slab morphology in the Cascadia gore arc and its relation to episodic tremor and slip. J. Geophys. Res. 115, B00A16 (2010).

    Article  Google Scholar 

  35. Hansen, R. T. J., Bostock, M. G. & Christensen, N. I. Nature of the low velocity zone in Cascadia from receiver function waveform inversion. Earth Planet. Sci. Lett. 337–338, 25–38 (2012).

    Article  Google Scholar 

  36. Peacock, S. M., Christensen, N. I., Bostock, M. G. & Audet, P. High pore pressures and porosity at 35 km depth in the Cascadia subduction zone. Geology 39, 471–474 (2011).

    Article  Google Scholar 

  37. Dragert, H., Wang, K. & James, T. S. A silent slip event on the deeper Cascadia subduction interface. Science 292, 1525–1528 (2001).

    Article  Google Scholar 

  38. Shelly, D. R., Beroza, G. C. & Ide, S. Non-volcanic tremor and low-frequency earthquake swarms. Nature 446, 305–307 (2007).

    Article  Google Scholar 

  39. Audet, P. & Kim, Y.-H. Teleseismic constraints on the geological environment of deep episodic slow earthquakes in subduction zone forearcs: a review. Tectonophysics 670, 1–15 (2016).

    Article  Google Scholar 

  40. Audet, P. & Bürgmann, R. Possible control of subduction zone slow-earthquake periodicity by silica enrichment. Nature 510, 389–392 (2014).

    Article  Google Scholar 

  41. Hyndman, R. D., McCrory, P. A., Wech, A., Kao, H. & Ague, J. Cascadia subducting plate fluids channelled to fore-arc mantle corner: ETS and silica deposition. J. Geophys. Res. 120, 4344–4358 (2015).

    Article  Google Scholar 

  42. Boyarko, D. C., Brudzinski, M. R., Porritt, R. W., Allen, R. M. & Trehu, A. M. Automated detection and location of tectonic tremor along the entire Cascadia margin from 2005 to 2011. Earth Planet. Sci. Lett. 430, 160–170 (2015).

    Article  Google Scholar 

  43. McCrory, P. A., Blair, J. L., Waldhauser, F. & Oppenheimer, D. H. Juan de Fuca slab geometry and its relation to Wadati-Benioff zone seismicity. J. Geophys. Res. 117, B09306 (2012).

    Article  Google Scholar 

  44. Sisson, T. W. & Layne, G. D. H2O in basalt and basaltic andesite glass inclusions from four subduction-related volcanoes. Earth Planet. Sci. Lett. 117, 619–635 (1993).

    Article  Google Scholar 

  45. Ruscitto, D. M., Wallace, P. J., Johnson, E. R., Kent, A. J. R. & Bindeman, I. N. Volatile contents of mafic magmas from cinder cones in the Central Oregon High Cascades: implications for magma formation and mantle conditions in a hot arc. Earth Planet. Sci. Lett. 298, 153–161 (2010).

    Article  Google Scholar 

  46. Plank, T., Kelley, K. A., Zimmer, M. M., Hauri, E. H. & Wallace, P. J. Why do mafic arc magmas contain 4 wt% water on average? Earth Planet. Sci. Lett. 364, 168–179 (2013).

    Article  Google Scholar 

  47. Leeman, W. P., Tonarini, S., Chan, L. H. & Borg, L. E. Boron and lithium isotopic variations in a hot subduction zone—the southern Washington Cascades. Chem. Geol. 212, 101–124 (2004).

    Article  Google Scholar 

  48. Leeman, W. P., Lewis, J. F., Evarts, R. C., Conrey, R. M. & Streck, M. J. Petrologic constraints on the thermal structure of the Cascades arc. J. Volcanol. Geotherm. Res. 140, 67–105 (2005).

    Article  Google Scholar 

  49. Wilson, D. S. A kinematic model for the Gorda deformation zone as a diffuse southern boundary of the Juan de Fuca plate. J. Geophys. Res. 91, 10259–10269 (1986).

    Article  Google Scholar 

  50. Miller, N. C. & Lizarralde, D. Finite-frequency wave propagation through outer rise faults and seismic measurements of upper mantle hydration. Geophys. Res. Lett. 43, 7982–7990 (2016).

    Article  Google Scholar 

  51. Canales, J. P. & Carbotte, S. Evolution and hydration of the Juan de Fuca crust and uppermost mantle (International Federation of Digital Seismograph Networks. Other/Seismic Network, 2012); http://dx.doi.org/10.7914/SN/X6_2012

  52. Carbotte, S. M., Canales, J. P., Carton, H. & Nedimović, M. R. Multi-Channel Seismic Shot Data from the Cascadia Subduction Zone Acquired During the R/V Marcus Langseth expedition MGL1211 (2012) (Integrated Earth Data Applications (IEDA), 2014); http://dx.doi.org/10.1594/IEDA/319000

    Google Scholar 

  53. Korenaga, J. et al. Crustal structure of the southeast Greenland margin from joint refraction and reflection seismic tomography. J. Geophys. Res. 105, 21591–21614 (2000).

    Article  Google Scholar 

  54. Dunn, R. A. & Toomey, D. R. Crack-induced seismic anisotropy in the oceanic crust across the East Pacific Rise (9° 30′ N). Earth Planet. Sci. Lett. 189, 9–17 (2001).

    Article  Google Scholar 

  55. McDonald, M. A., Webb, S. C., Hildebrand, J. A., Cornuelle, B. D. & Fox, C. G. Seismic structure and anisotropy of the Juan de Fuca Ridge at 45° N. J. Geophys. Res. 99, 4857–4873 (1994).

    Article  Google Scholar 

  56. Weekly, R. T., Wilcock, W. S. D., Toomey, D. G., Hooft, E. E. E. & Kim, E. Upper crustal seismic structure of the Endeavour segment, Juan de Fuca Ridge from traveltime tomography: implications for oceanic crustal accretion. Geochem. Geophys. Geosyst. 15, 1296–1315 (2014).

    Article  Google Scholar 

  57. Toomey, D. R., Jousselin, D., Dunn, R. A., Wilcock, W. S. D. & Detrick, R. S. Skew of mantle upwelling beneath the East Pacific Rise governs segmentation. Nature 446, 409–414 (2007).

    Article  Google Scholar 

  58. Kodaira, S. et al. Seismological evidence of mantle flow driving plate motions at a palaeo-spreading centre. Nat. Geosci. 7, 371–375 (2014).

    Article  Google Scholar 

  59. Erickson, S. N. & Jarrard, R. D. Velocity-porosity relationships for water-saturated siliciclastic sediments. J. Geophys. Res. 103, 30385–30406 (1998).

    Article  Google Scholar 

  60. Cavin, A., Underwood, M., Fisher, A. & Johnston-Karas, A. In Proc. ODP Sci. Res. (eds Fisher, A., Davis, E. E. & Escutia, C.) Vol. 168, 67–84 (Ocean Drilling Program, 2000).

    Google Scholar 

  61. Hamilton, E. L. Sound velocity-density relations in sea-floor sediments and rocks. J. Acoust. Soc. Am. 63, 366–377 (1978).

    Article  Google Scholar 

  62. Naif, S., Key, K., Constable, S. & Evans, R. L. Water-rich bending faults at the Middle America trench. Geochem. Geophys. Geosyst. 16, 2582–2597 (2015).

    Article  Google Scholar 

  63. McCollom, T. M. & Shock, E. L. Fluid-rock interactions in the lower oceanic crust: thermodynamic models of hydrothermal alteration. J. Geophys. Res. 103, 547–575 (1998).

    Article  Google Scholar 

  64. Schmidt, M. W. & Poli, S. Experimentally based water budgets for dehydrating slabs and consequences for arc magma generation. Earth Planet. Sci. Lett. 163, 361–379 (1998).

    Article  Google Scholar 

  65. Hacker, B. R. & Abers, G. A. Subduction Factory 3: an Excel worksheet and macro for calculating the densities, seismic wave speeds, and H2O contents of minerals and rocks at pressure and temperature. Geochem. Geophys. Geosyst. 5, Q01005 (2004).

    Article  Google Scholar 

  66. Evans, B. W. The serpentine multisystem revisited: chrysotile is metastable. Int. Geol. Rev. 46, 479–506 (2004).

    Article  Google Scholar 

  67. Johannes, W. Experimental investigation of the reaction Forsterite + H2O = Serpentinite + Brucite. Contrib. Mineral. Petrol. 19, 309–315 (1968).

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the US NSF. We thank the RV M.G. Langseth’s and RV Oceanus’ captains, crews, and technical staffs, and the US Ocean Bottom Seismograph Instrument Pool (OBSIP) managers and technical staff for their efforts, which made possible the success of cruises MGL1211 and OC1206A. We thank K. Wang for his review, which improved the manuscript.

Author information

Authors and Affiliations

Authors

Contributions

All authors are co-PIs of the project and contributed to interpretation of results and manuscript writing. J.P.C. conducted the OBS wide-angle seismic data analysis, tomography modelling, and water content calculations, and led the manuscript writing with substantial contributions from all co-authors. S.M.C. was the programme inception and planning leader, and the Chief Scientist for RV Langseth Cruise MGL0812. J.P.C. and H.C. were co-Chief Scientists for RV Oceanus Cruise OC1206A.

Corresponding author

Correspondence to J. P. Canales.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6094 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Canales, J., Carbotte, S., Nedimović, M. et al. Dry Juan de Fuca slab revealed by quantification of water entering Cascadia subduction zone. Nature Geosci 10, 864–870 (2017). https://doi.org/10.1038/ngeo3050

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo3050

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing