Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Regional patterns of extreme precipitation on Titan consistent with observed alluvial fan distribution


Geomorphic features typically associated with extreme rainfall events in terrestrial settings, including extensive fluvial features and alluvial fans, have been detected on Titan’s surface. Methane flow from precipitation on Titan can transport sediments and potentially erode the icy bedrock, but averaged precipitation rates from prior global-scale modelling are too low by at least an order of magnitude to initiate sediment transport of observed grain sizes at low latitudes. Here, we quantify the regional magnitude, frequency and variability of extreme rainfall events from simulations of present-day Titan, with a general circulation model coupled to a land model partially covered by wetlands reservoirs that can capture Titan’s regionally varying hydroclimate. We find that the most extreme storms tend to occur in the mid-latitudes, where observed alluvial fans are most concentrated. Storms capable of sediment transport and erosion occur at all latitudes in our simulations, consistent with the observed global coverage of fluvial features. Our results demonstrate the influential role of extreme precipitation in shaping Titan’s surface. We therefore suggest that, similarly to Earth but differently from Mars, active geomorphic work may be ongoing in the present climate on Titan.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Seasonal methane precipitation.
Figure 2: Titan’s precipitation statistics.
Figure 3: Rainfall compared to alluvial fans.


  1. 1

    Lorenz, R. et al. Fluvial channels on Titan: initial Cassini RADAR observations. Planet. Space Sci. 56, 1132–1144 (2008).

    Article  Google Scholar 

  2. 2

    Langhans, M. et al. Titan’s fluvial valleys: morphology, distribution, and spectral properties. Planet. Space Sci. 60, 34–51 (2012).

    Article  Google Scholar 

  3. 3

    Burr, D. M. et al. Fluvial features on Titan: insights from morphology and modeling. Geol. Soc. Am. Bull. 125, 299–321 (2013).

    Article  Google Scholar 

  4. 4

    Moore, J. M., Howard, A. D. & Morgan, A. M. The landscape of Titan as witness to its climate evolution. J. Geophys. Res. 119, 2060–2077 (2014).

    Article  Google Scholar 

  5. 5

    Birch, S., Hayes, A., Howard, A., Moore, J. & Radebaugh, J. Alluvial fan morphology, distribution and formation on Titan. Icarus 270, 238–247 (2016).

    Article  Google Scholar 

  6. 6

    Radebaugh, J. et al. Alluvial and fluvial fans on Saturn’s moon Titan reveal processes, materials and regional geology. Geol. Soc. Lond. Spec. Pub. (2016).

  7. 7

    Cartwright, R. & Burr, D. Using synthetic aperture radar data of terrestrial analogs to test for alluvial fan formation mechanisms on Titan. Icarus 284, 183–205 (2017).

    Article  Google Scholar 

  8. 8

    Hayes, A. G. The lakes and seas of Titan. Annu. Rev. Earth Planet. Sci. 44, 57–83 (2016).

    Article  Google Scholar 

  9. 9

    Wood, C. et al. Impact craters on Titan. Icarus 206, 334–344 (2010).

    Article  Google Scholar 

  10. 10

    Neish, C. & Lorenz, R. Elevation distribution of Titan’s craters suggests extensive wetlands. Icarus 228, 27–34 (2014).

    Article  Google Scholar 

  11. 11

    Neish, C. et al. Fluvial erosion as a mechanism for crater modification on Titan. Icarus 270, 114–129 (2016).

    Article  Google Scholar 

  12. 12

    Moore, J. M. & Howard, A. D. Large alluvial fans on Mars. J. Geophys. Res. 110, E04005 (2005).

    Google Scholar 

  13. 13

    Ferrier, K. L., Huppert, K. L. & Perron, J. T. Climatic control of bedrock river incision. Nature 496, 206–209 (2013).

    Article  Google Scholar 

  14. 14

    Perron, J. T. Climate and the pace of erosional landscape evolution. Annu. Rev. Earth Planet. Sci. 45, 561–591 (2017).

    Article  Google Scholar 

  15. 15

    Burr, D., Emery, J., Lorenz, R., Collins, G. & Carling, P. Sediment transport by liquid surficial flow: application to Titan. Icarus 181, 235–242 (2006).

    Article  Google Scholar 

  16. 16

    Perron, J. T. et al. Valley formation and methane precipitation rates on Titan. J. Geophys. Res. 111, E11001 (2006).

    Article  Google Scholar 

  17. 17

    Jaumann, R. et al. Fluvial erosion and post-erosional processes on Titan. Icarus 197, 526–538 (2008).

    Article  Google Scholar 

  18. 18

    Litwin, K. L., Zygielbaum, B. R., Polito, P. J., Sklar, L. S. & Collins, G. C. Influence of temperature, composition, and grain size on the tensile failure of water ice: implications for erosion on Titan. J. Geophys. Res. 117, E08013 (2012).

    Article  Google Scholar 

  19. 19

    Black, B. A., Perron, J. T., Burr, D. M. & Drummond, S. A. Estimating erosional exhumation on Titan from drainage network morphology. J. Geophys. Res. 117, E08006 (2012).

    Google Scholar 

  20. 20

    Blair, T. C. & McPherson, J. G. Geomorphology of Desert EnvironmentsCh. 14, 354–402 (Springer, 1994).

    Book  Google Scholar 

  21. 21

    Leier, A. L., DeCelles, P. G. & Pelletier, J. D. Mountains, monsoons, and megafans. Geology 33, 289–292 (2005).

    Article  Google Scholar 

  22. 22

    Molnar, P., Anderson, R. S., Kier, G. & Rose, J. Relationships among probability distributions of stream discharges in floods, climate, bed load transport, and river incision. J. Geophys. Res. 111, F02001 (2006).

    Article  Google Scholar 

  23. 23

    DiBiase, R. A. & Whipple, K. X. The influence of erosion thresholds and runoff variability on the relationships among topography, climate, and erosion rate. J. Geophys. Res. 116, F04036 (2011).

    Article  Google Scholar 

  24. 24

    Borga, M., Stoffel, M., Marchi, L., Marra, F. & Jakob, M. Hydrogeomorphic response to extreme rainfall in headwater systems: flash floods and debris flows. J. Hydrol. 518, 194–205 (2014).

    Article  Google Scholar 

  25. 25

    D’Arcy, M. K., Whittaker, A. C. & Roda Boluda, D. C. Glacial–interglacial climate changes recorded by debris flow deposits, Owens Valley, California. Quat. Sci. Rev. 169, 288–311 (2017).

    Article  Google Scholar 

  26. 26

    Gibling, M., Tandon, S., Sinha, R. & Jain, M. Discontinuity-bounded alluvial sequences of the southern Gangetic Plains, India: aggradation and degradation in response to monsoonal strength. J. Sediment. Res. 75, 369–385 (2005).

    Article  Google Scholar 

  27. 27

    Lorenz, R. D., Griffith, C. A., Lunine, J. I., McKay, C. P. & Renn, N. O. Convective plumes and the scarcity of Titan’s clouds. Geophys. Res. Lett. 32, L01201 (2005).

    Google Scholar 

  28. 28

    Barth, E. L. & Rafkin, S. C. Convective cloud heights as a diagnostic for methane environment on Titan. Icarus 206, 467–484 (2010).

    Article  Google Scholar 

  29. 29

    Rafkin, S. C. & Barth, E. Environmental control of deep convective clouds on Titan: the combined effect of CAPE and wind shear on storm dynamics, morphology, and lifetime. J. Geophys. Res. 120, 739–759 (2015).

    Article  Google Scholar 

  30. 30

    Mitchell, J. L., Pierrehumbert, R. T., Frierson, D. M. & Caballero, R. The dynamics behind Titan’s methane clouds. Proc. Natl Acad. Sci. USA 103, 18421–18426 (2006).

    Article  Google Scholar 

  31. 31

    Schneider, T., Graves, S., Schaller, E. & Brown, M. Polar methane accumulation and rainstorms on Titan from simulations of the methane cycle. Nature 481, 58–61 (2012).

    Article  Google Scholar 

  32. 32

    Lora, J. M., Lunine, J. I. & Russell, J. L. GCM simulations of Titan’s middle and lower atmosphere and comparison to observations. Icarus 250, 516–528 (2015).

    Article  Google Scholar 

  33. 33

    Newman, C., Richardson, M., Lian, Y. & Lee, C. Simulating Titan’s methane cycle with the TitanWRF General Circulation Model. Icarus 267, 106–134 (2016).

    Article  Google Scholar 

  34. 34

    Mitchell, J. L. & Lora, J. M. The climate of Titan. Annu. Rev. Earth Planet. Sci. 44, 353–380 (2016).

    Article  Google Scholar 

  35. 35

    Poggiali, V. et al. Liquid-filled canyons on Titan. Geophys. Res. Lett. 43, 7887–7894 (2016).

    Article  Google Scholar 

  36. 36

    Arzani, N. Catchment lithology as a major control on alluvial megafan development, Kohrud Mountain range, central Iran. Earth Surf. Process. Landf. 37, 726–740 (2012).

    Article  Google Scholar 

  37. 37

    Lora, J. M. & Mitchell, J. L. Titan’s asymmetric lake distribution mediated by methane transport due to atmospheric eddies. Geophys. Res. Lett. 42, 6213–6220 (2015).

    Article  Google Scholar 

  38. 38

    Rossi, M. W., Whipple, K. X. & Vivoni, E. R. Precipitation and evapotranspiration controls on daily runoff variability in the contiguous United States and Puerto Rico. J. Geophys. Res. 121, 128–145 (2016).

    Article  Google Scholar 

  39. 39

    Mather, A., Stokes, M. & Whitfield, E. River terraces and alluvial fans: the case for an integrated Quaternary fluvial archive. Quat. Sci. Rev. 166, 74–90 (2017).

    Article  Google Scholar 

  40. 40

    Beaty, C. B. Age and estimated rate of accumulation of an alluvial fan, White Mountains, California, USA. Am. J. Sci. 268, 50–77 (1970).

    Article  Google Scholar 

  41. 41

    Burr, D. M., Drummond, S. A., Cartwright, R., Black, B. A. & Perron, J. T. Morphology of fluvial networks on Titan: evidence for structural control. Icarus 226, 742–759 (2013).

    Article  Google Scholar 

  42. 42

    Wall, S. et al. Active shoreline of Ontario Lacus, Titan: a morphological study of the lake and its surroundings. Geophys. Res. Lett. 37, L05202 (2010).

    Article  Google Scholar 

  43. 43

    Turtle, E. et al. Rapid and extensive surface changes near Titan’s equator: evidence of April showers. Science 331, 1414–1417 (2011).

    Article  Google Scholar 

  44. 44

    Lora, J., Lunine, J., Russell, J. & Hayes, A. Simulations of Titan’s paleoclimate. Icarus 243, 264–273 (2014).

    Article  Google Scholar 

  45. 45

    Howard, A. D., Breton, S. & Moore, J. M. Formation of gravel pavements during fluvial erosion as an explanation for persistence of ancient cratered terrain on Titan and Mars. Icarus 270, 100–113 (2016).

    Article  Google Scholar 

  46. 46

    Griffith, C. A., McKay, C. P. & Ferri, F. Titan’s tropical storms in an evolving atmosphere. Astrophys. J. Lett. 687, L41 (2008).

    Article  Google Scholar 

  47. 47

    Griffith, C. A. et al. Characterization of clouds in Titan’s tropical atmosphere. Astrophys. J. Lett. 702, L105 (2009).

    Article  Google Scholar 

  48. 48

    Schaller, E., Roe, H., Schneider, T. & Brown, M. Storms in the tropics of Titan. Nature 460, 873–875 (2009).

    Article  Google Scholar 

  49. 49

    Cornet, T. et al. Dissolution on Titan and on Earth: toward the age of Titan’s karstic landscapes. J. Geophys. Res. 120, 1044–1074 (2015).

    Article  Google Scholar 

  50. 50

    Birch, S. et al. Geomorphologic mapping of Titan’s polar terrains: constraining surface processes and landscape evolution. Icarus 282, 214–236 (2017).

    Article  Google Scholar 

  51. 51

    Lora, J. M. & Ádámkovics, M. The near-surface methane humidity on Titan. Icarus 286, 270–279 (2017).

    Article  Google Scholar 

  52. 52

    Roe, H., Bouchez, A., Trujillo, C., Schaller, E. & Brown, M. Discovery of temperate latitude clouds on Titan. Astrophys. J. Lett. 618, L49 (2005).

    Article  Google Scholar 

  53. 53

    Bouchez, A. & Brown, M. Statistics of Titan’s south polar tropospheric clouds. Astrophys. J. Lett. 618, L53 (2005).

    Article  Google Scholar 

  54. 54

    Schaller, E. L., Brown, M. E., Roe, H. G. & Bouchez, A. H. A large cloud outburst at Titan’s south pole. Icarus 182, 224–229 (2006).

    Article  Google Scholar 

  55. 55

    Rodriguez, S. et al. Titan’s cloud seasonal activity from winter to spring with Cassini/VIMS. Icarus 216, 89–110 (2011).

    Article  Google Scholar 

  56. 56

    Turtle, E. et al. Seasonal evolution in the behavior of Titan’s clouds from Cassini ISS, 2004–2017. In Euro. Planet. Sci. Cong. 2017 Vol. 11, EPSC2017–352–1 (European Planetary Science Congress, 2017).

    Google Scholar 

Download references


This work was supported by NASA Cassini Data Analysis and Participating Scientists (CDAPS) Program grant NNX16AI44G. We are grateful to E. Turtle and the Cassini ISS team for sharing unpublished cloud observation data to include in our figures.

Author information




S.P.F. conducted the simulations, performed the data analysis, prepared figures, and wrote the bulk of the manuscript. All co-authors contributed guidance to the analysis and assisted with writing the manuscript. The model used was developed in previous work by J.M.L.

Corresponding author

Correspondence to S. P. Faulk.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 600 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faulk, S., Mitchell, J., Moon, S. et al. Regional patterns of extreme precipitation on Titan consistent with observed alluvial fan distribution. Nature Geosci 10, 827–831 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing