Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis

Abstract

Between 5 and 6 million years ago, during the so-called Messinian salinity crisis, the Mediterranean basin became a giant salt repository. The possibility of abrupt and kilometre-scale sea-level changes during this extreme event is debated. Messinian evaporites could signify either deep- or shallow-marine deposits, and ubiquitous erosional surfaces could indicate either subaerial or submarine features. Significant and fast reductions in sea level unload the lithosphere, which can increase the production and eruption of magma. Here we calculate variations in surface load associated with the Messinian salinity crisis and compile the available time constraints for pan-Mediterranean magmatism. We show that scenarios involving a kilometre-scale drawdown of sea level imply a phase of net overall lithospheric unloading at a time that appears synchronous with a magmatic pulse from the pan-Mediterranean igneous provinces. We verify the viability of a mechanistic link between unloading and magmatism using numerical modelling of decompression partial mantle melting and dyke formation in response to surface load variations. We conclude that the Mediterranean magmatic record provides an independent validation of the controversial kilometre-scale evaporative drawdown and sheds new light on the sensitivity of magmatic systems to the surface forcing.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Distribution of Mediterranean magmatic minerals dated between 5 and 6.4 Ma and surface load variation estimates by the reference MSC scenario.
Figure 2: Pressure and melt production change rate at depth in response to the MSC-related surface load variations.
Figure 3: Partial melting of partially hydrated mantle rocks modulated by surface unloading.
Figure 4: Overpressure and deviatoric horizontal stresses for the geodynamic model in Fig. 2.

References

  1. 1

    Jicha, B., Scholl, D. W. & Rea, D. Circum-Pacific arc flare-ups and global cooling near the Eocene–Oligocene boundary. Geology 37, 303–306 (2009).

    Article  Google Scholar 

  2. 2

    Jull, M. & McKenzie, D. The effect of deglaciation on mantle melting beneath Iceland. J. Geophys. Res. 101, 21815–21828 (1996).

    Article  Google Scholar 

  3. 3

    Jellinek, A. M., Manga, M. & Saar, M. O. Did melting glaciers cause volcanic eruptions in eastern California? Probing the mechanics of dike formation. J. Geophys. Res. 109, B09206 (2004).

    Article  Google Scholar 

  4. 4

    Huybers, P. & Langmuir, C. Feedback between deglaciation, volcanism, and atmospheric CO2 . Earth Planet. Sci. Lett. 286, 479–491 (2009).

    Article  Google Scholar 

  5. 5

    Crowley, J. W., Katz, R. F., Huybers, P., Langmuir, C. & Park, S.-H. Glacial cycles drive variations in the production of oceanic crust. Science 347, 1237–1240 (2015).

    Article  Google Scholar 

  6. 6

    Sternai, P., Caricchi, L., Castelltort, S. & Champagnac, J.-D. Deglaciation and glacial erosion: a joint control on magma productivity by continental unloading. Geophys. Res. Lett. 43, 1–10 (2016).

    Article  Google Scholar 

  7. 7

    McGuire, W. J. et al. Correlation between rate of sea-level change and frequency of explosive volcanism in the Mediterranean. Nature 389, 473–476 (1997).

    Article  Google Scholar 

  8. 8

    Gautier, F., Clauzon, G., Suc, J. P., Cravatte, J. & Violanti, D. Age et durée de la crise de salinité messinienne. C. R. Acad. Sci. 318, 1103–1109 (1994).

    Google Scholar 

  9. 9

    Hsü, K. J., Ryan, W. B. & Cita, M. Late Miocene desiccation of the Mediterranean. Nature 242, 240–244 (1973).

    Article  Google Scholar 

  10. 10

    Ogniben, L. Petrografia della Serie Solfifera Siciliana e considerazioni geologiche relative. Mem. Descr. Carta Geol. Ital. 22, 1–275 (1957).

    Google Scholar 

  11. 11

    Perrodon, A. Etude géologique des bassins néogènes sublittoraux de l’Algérie occidentale. Bull. Serv. Carte Géol. Algér 12, 328 (1957).

    Google Scholar 

  12. 12

    Clauzon, G., Suc, J. P., Gautier, F., Berger, A. & Loutre, M. F. Alternate interpretation of the Messinian salinity crisis: controversy resolved? Geology 24, 363–366 (1996).

    Article  Google Scholar 

  13. 13

    Roveri, M. et al. Dense shelf water cascading and Messinian canyons: a new scenario for the Mediterranean salinity crisis. Am. J. Sci. 314, 751–784 (2014).

    Article  Google Scholar 

  14. 14

    Lugli, S., Manzi, V., Roveri, M. & Schreiber, B. The deep record of the Messinian salinity crisis: evidence of a non-desiccated Mediterranean Sea. Palaeogeogr. Palaeoclimatol. Palaeoecol. 297, 83–99 (2015).

    Google Scholar 

  15. 15

    Urgeles, R. et al. New constraints on the Messinian sealevel drawdown from 3D seismic data of the Ebro Margin, western Mediterranean. Basin Res. 23, 123–145 (2011).

    Article  Google Scholar 

  16. 16

    Roveri, R. et al. The Messinian salinity crisis: past and future of a great challenge for marine sciences. Mar. Geol. 352, 25–58 (2014).

    Article  Google Scholar 

  17. 17

    Hsü, K. J., Cita, M. & Ryan, B. in Initial Reports of the Deep Sea Drilling Project Vol. 13 (eds Ryan, W. F. B. & Hsü, K. J. et al.) 1203–1231 (US Government Printing Office, 1973).

    Google Scholar 

  18. 18

    Ryan, W. B. Modeling the magnitude and timing of evaporative drawdown during the Messinian salinity crisis. Stratigraphy 5, 227–243 (2008).

    Google Scholar 

  19. 19

    Ryan, W. B. & Cita, M. B. The nature and distribution of Messinian erosional surfaces—indicators of a several-kilometer-deep Mediterranean in the Miocene. Mar. Geol. 27, 193–230 (1978).

    Article  Google Scholar 

  20. 20

    Ryan, W. B. Geodynamic responses to a two-step model of the Messinian salinity crisis. Bull. Soc. Géol. Fr. 182, 73–78 (2011).

    Article  Google Scholar 

  21. 21

    Jolivet, L., Augier, R., Robin, C., Suc, J. P. & Rouchy, J. M. Lithospheric-scale geodynamic context of the Messinian salinity crisis. Sediment. Geol. 188–189, 9–33 (2006).

    Article  Google Scholar 

  22. 22

    Duggen, S., Hoernle, K., van den Bogaard, P. & Harris, C. Magmatic evolution of the Alboran region: the role of subduction in forming the western Mediterranean and causing the Messinian Salinity Crisis. Earth Planet. Sci. Lett. 218, 91–108 (2004).

    Article  Google Scholar 

  23. 23

    Jolivet, L. & Brun, J.-P. Cenozoic geodynamic evolution of the Aegean. Int. J. Earth Sci. 99, 109–138 (2010).

    Article  Google Scholar 

  24. 24

    Serri, G. F., Innocenti, F. & Manetti, P. Geochemical and petrological evidence of the subduction of delaminated Adriatic continental lithosphere in the genesis of the Neogene–Quaternary magmatism of Central Italy. Tectonophysics 223, 117–147 (1993).

    Article  Google Scholar 

  25. 25

    Bache, F. et al. A two step process for the reflooding of the Mediterranean after the Messinian Salinity Crisis. Basin Res. 24, 125–153 (2012).

    Article  Google Scholar 

  26. 26

    Ghiorso, M. S., Hirschmann, M. M., Reiners, P. W. & Kress, V. C. The pMELTS: a revision of MELTS for improved calculation of phase relations and major element partitioning related to partial melting of the mantle to 3 GPa. Geochem. Geophys. Geosyst. 3, 1–35 (2002).

    Article  Google Scholar 

  27. 27

    Tumanian, M., Frezzotti, M. L., Peccerillo, A., Brandmayr, E. & Panza, G. Thermal structure of the shallow upper mantle beneath Italy and neighbouring areas: correlation with magmatic activity and geodynamic significance. Earth-Sci. Rev. 114, 369–385 (2012).

    Article  Google Scholar 

  28. 28

    Jolivet, L. et al. Ductile extension in alpine Corsica. Geology 18, 1007–1010 (1990).

    Article  Google Scholar 

  29. 29

    Turcotte, D. L. & Schubert, G. Geodynamics (Cambridge Univ. Press, 2002).

    Google Scholar 

  30. 30

    Turcotte, D. L. & Ahern, J. L. A porous flow model for magma migration in the asthenosphere. J. Geophys. Res. 83, 767–772 (1978).

    Article  Google Scholar 

  31. 31

    Rubin, A. M. Tensile fracture of rock at high confining pressure: implications for dike propagation. J. Geophys. Res. 98, 15919–15935 (1993).

    Article  Google Scholar 

  32. 32

    Olive, J.-A. et al. Sensitivity of seafloor bathymetry to climate-driven fluctuations in mid-ocean ridge magma supply. Science 350, 310–313 (2015).

    Article  Google Scholar 

  33. 33

    Gargani, J. & Rigollet, C. Mediterranean sea level variations during the Messinian salinity crisis. Geophys. Res. Lett. 34, 10 (2007).

    Article  Google Scholar 

  34. 34

    Garcia-Castellanos, D. & Villaseñor, A. Messinian salinity crisis regulated by competing tectonics and erosion at the Gibraltar arc. Nature 480, 359–363 (2011).

    Article  Google Scholar 

  35. 35

    Jolivet, L. & Faccenna, C. Mediterranean extension and the Africa–Eurasia collision. Tectonics 19, 1095–1106 (2000).

    Article  Google Scholar 

  36. 36

    Krijgsman, W. & Garcés, M. Paleomagnetic constraints on the geodynamic evolution of the Gibraltar Arc. Terra Nova 16, 281–287 (2004).

    Article  Google Scholar 

  37. 37

    Malinverno, A. & Ryan, W. B. Extension in the Tyrrhenian Sea and shortening in the Apennines as result of arc migration driven by sinking of the lithosphere. Tectonics 5, 227–245 (1986).

    Article  Google Scholar 

  38. 38

    Jolivet, L. et al. Subduction, convergence and the mode of backarc extension in the Mediterranean region. Bull. Soc. Géol. Fr. 179, 525–550 (2008).

    Article  Google Scholar 

  39. 39

    Duggen, S., Hoernle, K., Van Den Bogaard, P., Rüpke, L. & Morgan, J. P. Deep roots of the Messinian salinity crisis. Nature 422, 602–606 (2003).

    Article  Google Scholar 

  40. 40

    Pe-Piper, G. & Piper, D. J. Postcollisional Tectonics and Magmatism in the Mediterranean Region and Asia (eds Dilek, Y. & Pavlides, S.) 259–282 (Geological Society of America, 2006).

    Google Scholar 

  41. 41

    Jolivet, L. et al. The geological signature of a slab tear below the Aegean. Tectonophysics 659, 166–182 (2015).

    Article  Google Scholar 

  42. 42

    Sternai, P., Jolivet, L., Menant, A. & Gerya, T. Driving the upper plate surface deformation by slab rollback and mantle flow. Earth Planet. Sci. Lett. 405, 110–118 (2014).

    Article  Google Scholar 

  43. 43

    Menant, A., Sternai, P., Jolivet, L., Guillou-Frottier, L. & Gerya, T. V. 3D numerical assessments for mantle flow and magma genesis in laterally constrained subduction zones: the eastern Mediterranean case study. Earth Planet. Sci. Lett. 442, 93–107 (2016).

    Article  Google Scholar 

  44. 44

    Blanc, P. L. Of sills and straits: a quantitative assessment of the Messinian Salinity Crisis. Deep Sea Res. Part I 47, 1429–1460 (2000).

    Article  Google Scholar 

  45. 45

    Millero, F., Chen, C., Bradshaw, A. & Schleicher, K. A new high pressure equation of state for seawater. Deep-Sea Res. A 27, 255–264 (1980).

    Article  Google Scholar 

  46. 46

    Govers, R. Choking the Mediterranean to dehydration: the Messinian salinity crisis. Geology 37, 167–170 (2009).

    Article  Google Scholar 

  47. 47

    von Blanckenburg, F. & Huw Davies, J. Slab breakoff: a model for syncollisional magmatism and tectonics in the Alps. Tectonics 1, 120–131 (1995).

    Article  Google Scholar 

  48. 48

    McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse–greenhouse variability. Science 352, 444–447 (2016).

    Article  Google Scholar 

  49. 49

    Gerya, T. Introduction to Numerical Geodynamic Modelling (Cambridge Univ. Press, 2010).

    Google Scholar 

  50. 50

    Schmidt, P. et al. Effects of present-day deglaciation in Iceland on mantle melt production rates. J. Geophys. Res. 118, 3366–3379 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

P.S. is grateful to the Swiss NSF for providing funding for this project (Ambizione grant PZ00P2_168113/1). L.C. and T.E.S. were funded by the European Research Council (ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No. 677493 — FEVER). D.G.-C. was funded by the MITE CGL2014-59516 (Spanish Government). S.C. was funded by Swiss NSF grant No. 200021–146822. J.-A. Olive is thanked for helpful suggestions regarding Fig. 3 and all related aspects.

Author information

Affiliations

Authors

Contributions

P.S. conceived the scientific question, designed and performed the work and wrote the manuscript. L.C. contributed to the conception of the scientific question and helped with the MELTS modelling. D.G.-C. and L.J. provided fundamental insights into the available knowledge about the MSC as well as the Mediterranean geodynamics and magmatism. T.E.S. helped with the statistical treatment of data. S.C. contributed to the conception of the scientific question. All authors contributed to the design of the work and improved the manuscript.

Corresponding author

Correspondence to Pietro Sternai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

>Supplementary Information (PDF 422 kb)

Supplementary Information

>Supplementary Information (XLSX 15 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sternai, P., Caricchi, L., Garcia-Castellanos, D. et al. Magmatic pulse driven by sea-level changes associated with the Messinian salinity crisis. Nature Geosci 10, 783–787 (2017). https://doi.org/10.1038/ngeo3032

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing