Impact-driven subduction on the Hadean Earth


Impact cratering was a dominant geologic process in the early Solar System that probably played an active role in the crustal evolution of the young terrestrial planets. The Earth’s interior during the Hadean, 4.56 to 4 billion years ago, may have been too hot to sustain plate tectonics. However, whether large impacts could have triggered tectonism on the early Earth remains unclear. Here we conduct global-scale tectonic simulations of the evolution of the Earth through the Hadean eon under variable impact fluxes. Our simulations show that the thermal anomalies produced by large impacts induce mantle upwellings that are capable of driving transient subduction events. Furthermore, we find that moderate-sized impacts can act as subduction triggers by causing localized lithospheric thinning and mantle upwelling, and modulate tectonic activity. In contrast to contemporary subduction, the simulated localized subduction events are relatively short-lived (less than 10 Myr) with relatively thin, weak plates. We suggest that resurgence in subduction activity induced by an increased impact flux between 4.1 and 4.0 billion years ago may explain the coincident increase in palaeointensity of the magnetic field. We further suggest that transient impact-driven subduction reconciles evidence from Hadean zircons for tectonic activity with other lines of evidence consistent with an Earth that was largely tectonically stagnant from the Hadean into the Archaean.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The effect of impacts on mantle dynamics.
Figure 2: Time evolution of global-scale Hadean convection simulation.
Figure 3: Evolution of Hadean heat flux and magnetic field.
Figure 4: Hadean Earth melt production and mobility.


  1. 1

    O’Neil, J., Carlson, R. W., Francis, D. & Stevenson, R. K. Neodymium-142 evidence for Hadean mafic crust. Science 321, 1828–1831 (2008).

  2. 2

    Wilde, S. A., Valley, J. W., Peck, W. H. & Graham, C. M. Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409, 175–178 (2001).

  3. 3

    Valley, J. W., Peck, W. H., King, E. M. & Wilde, S. A. A cool early Earth. Geology 30, 351–354 (2002).

  4. 4

    Hopkins, M., Harrison, T. M. & Manning, C. E. Low heat flow inferred from >4 Gyr zircons suggests Hadean plate boundary interactions. Nature 456, 493–496 (2008).

  5. 5

    Tarduno, J. A., Cottrell, R. D., Davis, W. J., Nimmo, F. & Bono, R. K. A Hadean to Paleoarchean geodynamo recorded by single zircon crystals. Science 349, 521–524 (2015).

  6. 6

    Kemp, A. I. S. et al. Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet. Sci. Lett. 296, 45–56 (2010).

  7. 7

    Debaille, V. et al. Stagnant-lid tectonics in early Earth revealed by 142Nd variations in late Archean rocks. Earth Planet. Sci. Lett. 373, 83–92 (2013).

  8. 8

    Touboul, M., Puchtel, I. S. & Walker, R. J. 182W evidence for long-term preservation of early mantle differentiation products. Science 335, 1065–1069 (2012).

  9. 9

    O’Neill, C. & Debaille, V. The evolution of Hadean–Eoarchaean geodynamics. Earth Planet. Sci. Lett. 406, 49–58 (2014).

  10. 10

    Moore, W. B. & Webb, A. A. G. Heat-pipe Earth. Nature 501, 501–505 (2013).

  11. 11

    Rozel, A. B., Golabek, G. J., Jain, C., Tackley, P. J. & Gerya, T. Continental crust formation on early Earth controlled by intrusive magmatism. Nature 545, 332–335 (2017).

  12. 12

    O’Neill, C., Lenardic, A., Moresi, L., Torsvik, T. H. & Lee, C. T. Episodic Precambrian subduction. Earth Planet. Sci. Lett. 262, 552–562 (2007).

  13. 13

    Moyen, J. F. & Van Hunen, J. Short-term episodicity of Archaean plate tectonics. Geology 40, 451–454 (2012).

  14. 14

    Davies, G. F. Conjectures on the thermal and tectonic evolution of the Earth. Lithos 30, 281–289 (1993).

  15. 15

    Gerya, T. V., Stern, R. J., Baes, M., Sobolev, S. V. & Whattam, S. A. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015).

  16. 16

    Roberts, J. H., Lillis, R. J. & Manga, M. Giant impacts on early Mars and the cessation of the Martian dynamo. J. Geophys. Res. 114, E04009 (2009).

  17. 17

    Marinova, M. M., Aharonson, O. & Asphaug, E. Mega-impact formation of the Mars hemispheric dichotomy. Nature 453, 1216–1219 (2008).

  18. 18

    Watters, W. A., Zuber, M. T. & Hager, B. H. Thermal perturbations caused by large impacts and consequences for mantle convection. J. Geophy. Res. 114, E02001 (2009).

  19. 19

    Roberts, J. H. & Barnouin, O. S. The effect of the Caloris impact on the mantle dynamics and volcanism of Mercury. J. Geophys. Res. 117, E02007 (2012).

  20. 20

    Marchi, S. et al. Widespread mixing and burial of Earth’s Hadean crust by asteroid impacts. Nature 511, 578–582 (2014).

  21. 21

    Marchi, S. et al. Global resurfacing of Mercury 4.0-4.1 billion years ago by heavy bombardment and volcanism. Nature 499, 59–61 (2013).

  22. 22

    Marchi, S. et al. High-velocity collisions from the lunar cataclysm recorded in asteroidal meteorites. Nat. Geosci. 6, 303–307 (2013).

  23. 23

    Hansen, V. L. Subduction origin on early Earth: a hypothesis. Geology 35, 1059–1062 (2007).

  24. 24

    Zhang, S. & O’Neill, C. The early geodynamic evolution of Mars-type planets. Icarus 265, 187–208 (2016).

  25. 25

    Elbeshausen, D. & Wünnemann, K. iSALE-3D: a three-dimensional, multi-material, multi-rheology hydrocode and its applications to large-scale geodynamic processes. In Proc. 11th Hypervelocity Impact Symp. (HVIS) (Fraunhofer, 2011).

  26. 26

    Bottke, W. F., Walker, R. J., Day, J. M., Nesvorny, D. & Elkins-Tanton, L. Stochastic late accretion to Earth, the Moon, and Mars. Science 330, 1527–1530 (2010).

  27. 27

    Norman, M. & Bottke, W. F. Late heavy bombardment. Annu. Rev. Earth Planet. Sci. 45, 619–647 (2017).

  28. 28

    Maier, W. D. et al. Progressive mixing of meteoritic veneer into the early Earth’s deep mantle. Nature 460, 620–623 (2009).

  29. 29

    Weller, M. B., Lenardic, A. & O’Neill, C. The effects of internal heating and large scale climate variations on tectonic bi-stability in terrestrial planets. Earth Planet. Sci. Lett. 420, 85–94 (2015).

  30. 30

    O’Neill, C., Lenardic, A., Weller, M., Moresi, L. & Quenette, S. A window for plate tectonics in terrestrial planet evolution? Phys. Earth Planet. Inter. 255, 80–92 (2016).

  31. 31

    Kronbichler, M., Heister, T. & Bangerth, W. High accuracy mantle convection simulation through modern numerical methods. Geophys. J. Int. 191, 12–29 (2012).

  32. 32

    Turcotte, D. & Schubert, G. Geodynamics 465 (Cambridge Univ. Press, 2002).

  33. 33

    Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals - II. Phase equilibria. Geophys. J. Int. 184, 1180–1213 (2011).

  34. 34

    Ringwood, A. E. & Irifune, T. Nature of the 650-Km seismic discontinuity - implications for mantle dynamics and differentiation. Nature 331, 131–136 (1988).

  35. 35

    Garel, F. et al. Interaction of subducted slabs with the mantle transition-zone: a regime diagram from 2-D thermo-mechanical models with a mobile trench and an overriding plate. Geochem. Geophys. Geosyst. 15, 1739–1765 (2014).

  36. 36

    Moore, D. E. & Rymer, M. J. Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448, 795–797 (2007).

  37. 37

    van der Pluijm, B. Structural geology: natural fault lubricants. Nat. Geosci. 4, 217–218 (2011).

  38. 38

    Remitti, F., Smith, S. A. F., Mittempergher, S., Gualtieri, A. F. & Di Toro, G. Frictional properties of fault zone gouges from the J-FAST drilling project (M w 9.0 2011 Tohoku-Oki earthquake). Geophys. Res. Lett. 42, 2691–2699 (2015).

  39. 39

    Escartin, J., Hirth, G. & Evans, B. Strength of slightly serpentinized peridotites: implications for the tectonics of oceanic lithosphere. Geology 29, 1023–1026 (2001).

  40. 40

    Gubbins, D., Alfe, D., Masters, G., Price, G. D. & Gillan, M. Gross thermodynamics of two-component core convection. Geophys. J. Int. 157, 1407–1414 (2004).

  41. 41

    Nimmo, F., Price, G. D., Brodholt, J. & Gubbins, D. The influence of potassium on core and geodynamo evolution. Geophy. J. Int. 156, 363–376 (2004).

  42. 42

    Watters, W. A., Zuber, M. T. & Hager, B. H. Thermal perturbations caused by large impacts and consequences for mantle convection. J. Geophys. Res. 114, E02001 (2009).

  43. 43

    Melosh, H. J. Impact Cratering: A Geologic Process 253 (Oxford Monographs on Geology and Geophysics, No. 11, Oxford Univ. Press, 1989).

  44. 44

    Pierazzo, E., Vickery, A. M. & Melosh, H. J. A reevaluation of impact melt production. Icarus 127, 408–423 (1997).

  45. 45

    Roberts, J. H. & Arkani-Hamed, J. Impact heating and coupled core cooling and mantle dynamics on Mars. J. Geophys. Res. 119, 729–744 (2014).

Download references


C.O’N. and S.Z. acknowledge support from the CCFS ARC Centre of Excellence (Pub. no. 1003/1175). S.M. and W.B. acknowledge support from NASA Exobiology program and NASA SSERVI.

Author information

C.O’N. wrote the majority of the paper, and performed the simulations. S.M. co-wrote portions of the paper, contributed to experimental design, and derived impact fluxes for computations. S.Z. aided in code development and performed some simulations. W.B. co-wrote portions of the paper.

Correspondence to C. O’Neill.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4007 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

O’Neill, C., Marchi, S., Zhang, S. et al. Impact-driven subduction on the Hadean Earth. Nature Geosci 10, 793–797 (2017).

Download citation

Further reading