Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The role of microbes in snowmelt and radiative forcing on an Alaskan icefield

Abstract

A lack of liquid water limits life on glaciers worldwide but specialized microbes still colonize these environments. These microbes reduce surface albedo, which, in turn, could lead to warming and enhanced glacier melt. Here we present results from a replicated, controlled field experiment to quantify the impact of microbes on snowmelt in red-snow communities. Addition of nitrogen–phosphorous–potassium fertilizer increased alga cell counts nearly fourfold, to levels similar to nitrogen–phosphorus-enriched lakes; water alone increased counts by half. The manipulated alga abundance explained a third of the observed variability in snowmelt. Using a normalized-difference spectral index we estimated alga abundance from satellite imagery and calculated microbial contribution to snowmelt on an icefield of 1,900 km2. The red-snow area extended over about 700 km2, and in this area we determined that microbial communities were responsible for 17% of the total snowmelt there. Our results support hypotheses that snow-dwelling microbes increase glacier melt directly in a bio-geophysical feedback by lowering albedo and indirectly by exposing low-albedo glacier ice. Radiative forcing due to perennial populations of microbes may match that of non-living particulates at high latitudes. Their contribution to climate warming is likely to grow with increased melt and nutrient input.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Appearance of red snow coincides with melt predictors on Eklutna Glacier, 2014.
Figure 2: Alga abundance increased by nutrient and water addition, decreased by HOCl addition with manipulated alga abundance determining snowmelt rate.
Figure 3: Spectral reflectance varies by particle abundance and source.
Figure 4: Microbes drive snowmelt on a large Alaskan icefield.

References

  1. 1

    Wiscombe, W. J. & Warren, S. G. A model for the spectral albedo of snow. I: Pure snow. J. Atmos. Sci. 37, 2712–2733 (1980).

    Article  Google Scholar 

  2. 2

    Box, J. et al. Greenland ice sheet albedo feedback: thermodynamics and atmospheric drivers. Crysophere 6, 821–839 (2012).

    Article  Google Scholar 

  3. 3

    Flanner, M. G., Zender, C. S., Randerson, J. T. & Rasch, P. J. Present-day climate forcing and response from black carbon in snow. J. Geophys. Res. 112, D11202 (2007).

    Article  Google Scholar 

  4. 4

    Bryant, A. C., Painter, T. H., Deems, J. S. & Bender, S. M. Impact of dust radiative forcing in snow on accuracy of operational runoff prediction in the Upper Colorado River Basin. Geophys. Res. Lett. 40, 3945–3949 (2013).

    Article  Google Scholar 

  5. 5

    Hood, E. et al. Glaciers as a source of ancient and labile organic matter to the marine environment. Nature 462, 1044–1047 (2009).

    Article  Google Scholar 

  6. 6

    Musilova, M. et al. Microbially driven export of labile organic carbon from the Greenland ice sheet. Nat. Geosci. 10, 360–365 (2017).

    Article  Google Scholar 

  7. 7

    Kohshima, S., Seko, K. & Yoshimura, Y. In Snow and Glacier Hydrology 309–316 (Publication no. 218, IAHS, 1993).

    Google Scholar 

  8. 8

    Thomas, W. H., Duval, B. & Nevada, S. California, USA, snow algae: snow albedo changes, algal-bacterial interrelationships, and ultraviolet radiation effects. Arct. Alp. Res. 27, 389–399 (1995).

    Article  Google Scholar 

  9. 9

    Painter, T. H. et al. Detection and quantification of snow algae with an airborne imaging spectrometer. Appl. Environ. Microbiol. 67, 5267–5272 (2001).

    Article  Google Scholar 

  10. 10

    Takeuchi, N., Dial, R. D., Kohshima, S., Segawa, T. & Uetake, J. Spatial distribution and abundance of red snow algae on the Harding Icefield, Alaska derived from a satellite image. Geophys. Res. Lett. 33, L21502 (2006).

    Article  Google Scholar 

  11. 11

    Yallop, M. L. et al. Photophysiology and albedo-changing potential of the ice algal community on the surface of the Greenland ice sheet. ISME J. 6, 2302–2313 (2012).

    Article  Google Scholar 

  12. 12

    Takeuchi, N., Kohshima, S. & Seko, K. Structure, formation, and darkening process of albedo-reducing material (cryoconite) on a Himalayan glacier: a granular algal mat growing on the glacier. Arct. Antarct. Alp. Res. 33, 115–122 (2001).

    Article  Google Scholar 

  13. 13

    Stibal, M., Šabacká, M. & Žárský, J. Biological processes on glacier and ice sheet surfaces. Nat. Geosci. 5, 771–774 (2012).

    Article  Google Scholar 

  14. 14

    Lutz, S., Anesio, A. M., Villar, S. E. & Benning, L. G. Variations of algal communities cause darkening of a Greenland glacier. FEMS Microbiol. Ecol. 89, 402–414 (2014).

    Article  Google Scholar 

  15. 15

    Takeuchi, N. et al. The effect of impurities on the surface melt of a glacier in the Suntar-Khayata mountain range, Russian Siberia. Front. Earth Sci. 3, 82–92 (2015).

    Article  Google Scholar 

  16. 16

    Lutz, S. et al. The biogeography of red snow microbiomes and their role in melting arctic glaciers. Nat. Commun. 7, 11968 (2016).

    Article  Google Scholar 

  17. 17

    Musilova, M., Tranter, M., Bamber, J. L., Takeuchi, N. & Anesio, A. M. Experimental evidence that microbial activity lowers the albedo of glaciers. Geochem. Perspect. Lett. 2, 106–116 (2016).

    Article  Google Scholar 

  18. 18

    Cook, J. M., Hodson, A. J., Taggart, A. J., Mernild, S. H. & Tranter, M. A predictive model for the spectral “bioalbedo” of snow. J. Geophys. Res. 122, 434–454 (2017).

    Article  Google Scholar 

  19. 19

    Lutz, S., Anesio, A. M., Edwards, A. & Benning, L. G. Linking microbial diversity and functionality of arctic glacial surface habitats. Environ Microbiol. 19, 551–565 (2016).

    Article  Google Scholar 

  20. 20

    Hoham, R. W. & Duval, B. Snow Ecology: An Interdisciplinary Examination of Snow-Covered Ecosystems 168–228 (Cambridge Univ. Press, 2001).

    Google Scholar 

  21. 21

    Anesio, A. M. & Laybourn-Parry, J. Glaciers and ice sheets as a biome. Trends Ecol. Evol. 27, 219–225 (2011).

    Article  Google Scholar 

  22. 22

    Hodson, A. et al. Glacial ecosystems. Ecol. Monogr. 78, 41–67 (2008).

    Article  Google Scholar 

  23. 23

    Bidigare, R. et al. Evidence for a photoprotective for secondary carotenoids of snow algae. J. Phycol. 29, 427–434 (1993).

    Article  Google Scholar 

  24. 24

    Remias, D., Lütz-Meindl, U. & Lütz, C. Photosynthesis, pigments and ultrastructure of the alpine snow alga Chlamydomonas nivalis. Eur. J. Phycol. 40, 259–268 (2005).

    Article  Google Scholar 

  25. 25

    VanLooy, J., Foster, R. & Ford, A. Accelerating thinning of Kenai Peninsula glaciers, Alaska. J. Glaciol. 44, 570–582 (1998).

    Article  Google Scholar 

  26. 26

    Fujii, M. et al. Microbial community structure, pigment composition, and nitrogen source of red snow in Antarctica. Microbial Ecol. 59, 466–475 (2010).

    Article  Google Scholar 

  27. 27

    Hamilton, T. L. & Havig, J. Primary productivity of snow algae communities on stratovolcanoes of the Pacific Northwest. Geobiology 15, 280–295 (2017).

    Article  Google Scholar 

  28. 28

    Elser, J. J. et al. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 10, 1135–1142 (2007).

    Article  Google Scholar 

  29. 29

    Takeuchi, N. The altitudinal distribution of snow algae on an Alaska glacier (Gulkana Glacier in the Alaska Range). Hydrol. Process. 15, 3447–3459 (2001).

    Article  Google Scholar 

  30. 30

    Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol. 282, 104–111 (2003).

    Article  Google Scholar 

  31. 31

    Di Mauro, B. et al. Mineral dust impact on snow radiative properties in the European Alps combining ground, UAV, and satellite observations. J. Geophys. Res. 120, 6080–6097 (2015).

    Google Scholar 

  32. 32

    Peltoniemi, J. I. et al. Soot on Snow experiment: bidirectional reflectance factor measurements of contaminated snow. Cryosphere 9, 2323–2337 (2015).

    Article  Google Scholar 

  33. 33

    Conway, H., Gades, A. & Raymond, C. F. Albedo of dirty snow during conditions of melt. Wat. Resour. Res. 32, 1713–1718 (1996).

    Article  Google Scholar 

  34. 34

    Doherty, S. J., Warren, S. G., Grenfell, T. C., Clarke, A. D. & Brandt, R. E. Light-absorbing impurities in Arctic snow. Atmos. Chem. Phys. 10, 11647–11680 (2010).

    Article  Google Scholar 

  35. 35

    Sturm, M. et al. 2001: Snow–shrub interactions in Arctic tundra: a hypothesis with climatic implications. J. Clim. 14, 336–344 (2001).

    Article  Google Scholar 

  36. 36

    IPCC Climate Change 2014: Synthesis Report (eds Core Writing Team, Pachauri, R. K. & Meyer, L. A.) (Cambridge Univ. Press, 2014).

  37. 37

    Keegan, K. M., Albert, M. R., McConnell, J. R. & Baker, I. Climate change and forest fires synergistically drive widespread melt events of the Greenland ice sheet. Proc. Natl Acad. Sci. USA 111, 7964–7967 (2014).

    Article  Google Scholar 

  38. 38

    Quinton, J. N., Govers, G., Van Oost, K. & Bardgett, R. D. The impact of agricultural soil erosion on biogeochemical cycling. Nat. Geosci. 3, 311–314 (2010).

    Article  Google Scholar 

  39. 39

    Harper, J., Humphrey, N., Pfeffer, W. T., Brown, J. & Fettweis, X. Greenland ice-sheet contribution to sea-level rise buffered by meltwater storage in firn. Nature 491, 240–243 (2012).

    Article  Google Scholar 

  40. 40

    Hubbard, B. & Glasser, N. F. Field Techniques in Glaciology and Glacial Geomorphology (John Wiley, 2005).

    Google Scholar 

  41. 41

    Dial, R. J. et al. The role of temperature in the distribution of the glacier ice worm Mesenchytraeus solifugus (Annelida: Oligochaeta: Enchytraeidae). Arct. Antarct. Alp. Res. 48, 199–211 (2016).

    Article  Google Scholar 

  42. 42

    Sass, L. C., Loso, M. G., Geck, J., Thoms, E. E. & McGrath, D. Geometry, mass balance and thinning at Eklutna Glacier, Alaska: an altitude-mass-balance feedback with implications for water resources. J. Glaciol. 63, 343–354 (2017).

    Article  Google Scholar 

  43. 43

    Ricchiazzi, P., Yang, S. R., Gautier, C. & Sowle, D. SBDART: a research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteorol. Soc. 79, 2101–2114 (1998).

    Article  Google Scholar 

  44. 44

    Collins, A. M. et al. Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS ONE 6, e24302 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

C. McNeil, T. Tumulo, A. Meyerhofer, K. Loan, J. Geck, T. Golden and C. Tobin assisted, and D. Kurtz and the National Park Service permitted the research. NASA Alaska Space Grant funded G.Q.G. and R.J.D.; National Institute for Water Resources funded R.J.D. and M.G.L.; Anchorage Municipal Light and Power and Anchorage Water and Wastewater Utility funded M.G.L.

Author information

Affiliations

Authors

Contributions

R.J.D. conceived and coordinated the project. G.Q.G. and R.J.D. designed ecology studies. G.Q.G. and M.G.L. performed glaciology. A.B.B., G.Q.G. and R.J.D. performed spectrometry. G.Q.G. and R.J.D. performed remote sensing. G.Q.G., M.G.L., and R.J.D. performed fieldwork. G.Q.G. performed laboratory counts. G.Q.G. and R.J.D. performed statistical modelling. R.J.D. wrote the paper with input from all.

Corresponding author

Correspondence to Roman J. Dial.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1311 kb)

Supplementary Information

Supplementary Information (MP4 36439 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ganey, G., Loso, M., Burgess, A. et al. The role of microbes in snowmelt and radiative forcing on an Alaskan icefield. Nature Geosci 10, 754–759 (2017). https://doi.org/10.1038/ngeo3027

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing