Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Intermediate-depth earthquakes linked to localized heating in dunite and harzburgite

Abstract

The occurrence of intermediate-depth and deep earthquakes at depths greater than 60 km in subducting slabs has long puzzled geoscientists. These earthquakes require some mechanism to accelerate the fault movement at high pressures above 1.8 GPa. Localized heating would contribute to faulting, but experimental evidence for this mechanism has been limited to pressures of up to 0.5 GPa. Here we conduct deformation experiments on dry dunite samples at pressures of 1.0 to 2.6 GPa and temperatures of 860 to 1,350 K—conditions close to those for relatively shallow intermediate-depth earthquakes. We observe plastic deformation of the dunite, followed by faulting and acoustic emissions at an accelerated strain rate of about 5 × 10−5 s−1 or higher. We find that ultrafine-grained gouge layers containing iron-rich melt films, which is indicative of a very high peak temperature of about 2,110 K along the fault planes. We also observe faulting in wet harzburgite—a dehydration product of antigorite—at natural stress levels of 0.3 to 0.4 gigapascals. We therefore suggest that intermediate-depth earthquakes can be induced by localized heating both in dry and wet subducting slabs, if the background strain rate exceeds a threshold value in the range from 10−16 to 10−13 s−1.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Mechanical and acoustic records in a dry dunite at 1,160 K.
Figure 2: Conditions for faulting.
Figure 3: Microstructures in a dry dunite (M1681).
Figure 4: Conditions for localized heating in harzburgite.
Figure 5: Faulting caused by accelerated strain localization in peridotites with and without a fine-grained shear zone.

References

  1. 1

    Dobson, D. P., Meredith, P. G. & Boon, S. A. Simulation of subduction zone seismicity by dehydration of serpentine. Nature 298, 1407–1410 (2002).

    Google Scholar 

  2. 2

    Peakock, S. M. Are the lower planes of double seismic zones caused by serpentine dehydration in subducting oceanic mantle? Geology 29, 299–302 (2001).

    Article  Google Scholar 

  3. 3

    Okazaki, K. & Hirth, G. Dehydration of lawsonite could directly trigger earthquakes in subductinng oceanic crust. Nature 530, 81–83 (2016).

    Article  Google Scholar 

  4. 4

    Omori, S., Kamiya, S., Maruyama, S. & Zhao, D. Morphology of the intraslab seismic zone and devolatilization phase equilibria of the subducting slab peridotite. Bull. Earthq. Res. Inst. Univ. Tokyo 76, 455–478 (2002).

    Google Scholar 

  5. 5

    Jung, H., Fei, Y., Silver, P. G. & Green, H. W. Frictional sliding in serpentine at very high pressure. Earth. Planet. Sci. Lett. 277, 273–279 (2009).

    Article  Google Scholar 

  6. 6

    Gasc, J. et al. Simultaneous acoustic emissions monitoring and synchrotron X-ray diffraction at high pressure and temperature: calibration and application to serpentinite dehydration. Phys. Earth Planet. Inter. 189, 121–133 (2011).

    Article  Google Scholar 

  7. 7

    Chernak, L. J. & Hirth, G. Deformation of antigorite serpentinite at high temperature and pressure. Earth Planet. Sci. Lett. 296, 23–33 (2010).

    Article  Google Scholar 

  8. 8

    Proctor, B. & Hirth, G. “Ductile to brittle” transition in thermally stable antigorite gouge at mantle pressures. J. Geophys. Res. 121, 1652–1663 (2016).

    Article  Google Scholar 

  9. 9

    Kelemen, P. B. & Hirth, G. A periodic shear-heating mechanism for intermediate-depth earthquakes in the mantle. Nature 446, 787–790 (2007).

    Article  Google Scholar 

  10. 10

    Reynard, B., Nakajima, J. & Kawakatsu, H. Earthquakes and plastic deformation of anhydrous slab mantle in double Wadati–Benioff zones. Geophys. Res. Lett. 37, L24309 (2010).

    Article  Google Scholar 

  11. 11

    Golding, N., Schulson, E. M. & Renshaw, C. W. Shear localiation in ice: mechanical response and microstructural evolution of P-faulting. Acta Mater. 60, 3616–3631 (2012).

    Article  Google Scholar 

  12. 12

    Di Toro, G., Hirose, T., Nielsen, S., Pennacchioni, G. & Shimamoto, T. Natural and experimental evidence of melt lubrication of faults during earthquakes. Science 311, 647–649 (2007).

    Article  Google Scholar 

  13. 13

    Pec, M., Stünitz, H., Heilbronner, R., Drury, M. & Capitani, C. Origin of pseudotachylites in slow creep experiments. Earth Planet. Sci. Lett. 355–356, 299–310 (2012).

    Article  Google Scholar 

  14. 14

    Van der Wal, D., Chopra, P., Drury, M. & FitzGerald, J. Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophys. Res. Lett. 20, 1479–1482 (1993).

    Article  Google Scholar 

  15. 15

    Akimoto, S.-I. & Komada, E. Effect of pressure on the melting of olivine and spinel polyorph of Fe2SiO4 . J. Geophys. Res. 72, 679–686 (1967).

    Article  Google Scholar 

  16. 16

    Davis, B. T. C. & England, L. The melting of forsterite up to 50 kilobars. J. Geophys. Res. 69, 1113–1116 (1964).

    Article  Google Scholar 

  17. 17

    Masuda, K., Mizutani, H. & Yamada, I. Experimental study of strain-rate dependence and pressure dependence of failure properties of granite. J. Phys. Earth. 35, 37–66 (1987).

    Article  Google Scholar 

  18. 18

    Lei, X. & Satoh, T. Indicators of critical point behavior prior to rock failure inferred from pre-failure damage. Tectonophysics 431, 97–111 (2007).

    Article  Google Scholar 

  19. 19

    Lei, X. in Fractal Analysis for Natural Hazards Vol. 261 (eds Cello, G.& Malamud, B. D.) 11–29 (The Geological Society of London, 2006).

    Google Scholar 

  20. 20

    Bayrak, Y., Yilmaztürk, A. & Öztürk, S. Lateral variations of the modal (a/b) values for the different regions of the world. J. Geodyn. 34, 653–666 (2002).

    Article  Google Scholar 

  21. 21

    Needleman, A. & Rice, J. R. Plastic creep flow effects in the diffusive cavitation of grain boundaries. Acta Metall. 28, 1315–1332 (1980).

    Article  Google Scholar 

  22. 22

    Demouchy, S., Mussi, A., Barou, F., Tommasi, A. & Cordier, P. Viscoplasticity of polycrystalline olivine experimentally deformed at high pressure and 900 °C. Tectonophysics 623, 123–135 (2014).

    Article  Google Scholar 

  23. 23

    Ji, S., Wang, Z. & Wirth, R. Bulk flow strength of forsterite-enstatite composites as a function of forsterite content. Tectonophysics 341, 69–93 (2001).

    Article  Google Scholar 

  24. 24

    Obata, M. & Karato, S. Ultramafic pseudotachylite from the Balmuccia peridotite, Ivrea-Verbano zone, northern Italy. Tectonophysics 242, 313–328 (1995).

    Article  Google Scholar 

  25. 25

    Parman, S. W. & Grove, T. L. Harzburgite melting with and without H2O: experimental data and predictive modeling. J. Geophys. Res. 109, B02201 (2004).

    Article  Google Scholar 

  26. 26

    Kushiro, I., Syono, Y. & Akimoto, S. Melting of a peridotite nodule at high pressures and high water pressures. J. Geophys. Res. 73, 6023–6029 (1968).

    Article  Google Scholar 

  27. 27

    Sholtz, C. H. The frequency-magnitude relation of microfracturing in rock and its relation to earthquakes. Bull. Seismol. Soc. Am. 58, 399–415 (1968).

    Google Scholar 

  28. 28

    Lei, X., Kusunose, K., Satoh, T. & Nishizawa, O. The hierarchical rupture process of a fault: an experimental study. Phys. Earth Planet. Inter. 137, 213–228 (2003).

    Article  Google Scholar 

  29. 29

    Karato, S. Deformation of Earth Materials: An Introduction to the Rheology of Solid Earth (Cambridge Univ. Press, 2008).

    Google Scholar 

  30. 30

    Abramson, E. H., Browon, J. M., Slutsky, L. J. & Zaug, J. The elastic constants of San Carlos olivine up to 17 GPa. J. Geophys. Res. 105, 7893–7908 (1997).

    Google Scholar 

  31. 31

    Webb, S. L. The elasticity of the upper mantle orthosilicates olivine and garnet to 3 GPa. Phys. Chem. Miner. 16, 684–692 (1989).

    Article  Google Scholar 

  32. 32

    Xu, Y. et al. Thermal diffusivity and conductivity of olivine, wadsleyite and ringwoodite to 20 GPa and 1373 K. Phys. Earth Planet. Inter. 143–144, 321–336 (2004).

    Article  Google Scholar 

  33. 33

    Hirth, G. & Kohlstedt, D. L. in Inside the Subduction Factory (ed. Eiler, J.) 83–105 (Geophysical Monograph Series, American Geophysical Union, 2003).

    Google Scholar 

  34. 34

    Ulmer, P. & Trommsdorff, V. Serpentine stability to mantle depths and subduction-related magmatism. Science 268, 858–861 (1995).

    Article  Google Scholar 

  35. 35

    Kita, S., Okada, T., Nakajima, J., Matsuzawa, T. & Hasegawa, A. Existence of a seismic belt in the upper plane of the double seismic zone extending in the along-arc direction at depths of 70–100 km beneath NE Japa. Geophys. Res. Lett. 33, L24310 (2006).

    Article  Google Scholar 

  36. 36

    Ohuchi, T. et al. Dislocation-accommodated grain boundary sliding of water-rich olivine in the Earth’s deep upper mantle. Sci. Adv. 1, e1500360 (2015).

    Article  Google Scholar 

  37. 37

    Farla, R. J., Karato, S. & Cai, Z. Role of orthopyroxene in rheological weakening of the lithosphere via dynamic recrystallization. Proc. Natl Acad. Sci. USA 110, 16355–16360 (2013).

    Article  Google Scholar 

  38. 38

    Warren, J. M. & Hirth, G. Grain size sensitive deformation mechanisms in naturally deformed peridotites. Earth Planet. Sci. Lett. 248, 438–450 (2006).

    Article  Google Scholar 

  39. 39

    Ueda, T., Obata, M., Di Toro, G., Kanagawa, K. & Ozawa, K. Mantle earthquakes frozen in mylonitezed ultramafic pseudotachylytes of spinel-lherzolite facies. Geology 36, 607–610 (2008).

    Article  Google Scholar 

  40. 40

    Austrheim, H. & Boundy, T. M. Pseudotachylytes generated during seismic faulting and eclogitization of the deep crust. Science 265, 82–83 (1994).

    Article  Google Scholar 

  41. 41

    Ponomarev, A. V., Zavyalov, A. D., Smirnov, V. B. & A, L. D. Physical modelling of the formation and evolution of seismically active fault zones. Tectonophysics 277, 57–81 (1997).

    Article  Google Scholar 

  42. 42

    Utsu, T., Ogata, Y. & Matsu’ura, R. S. The centenary of the Omori formula for a decay law of aftershock activity. J. Phys. Earth 43, 1–133 (1995).

    Article  Google Scholar 

  43. 43

    Ohuchi, T. et al. Superplasticity in hydrous melt-bearing dunite: Implications for shear localization in Earth’s upper mantle. Earth Planet. Sci. Lett. 335–336, 59–71 (2012).

    Article  Google Scholar 

  44. 44

    Seto, Y. Whole pattern fitting for two-dimensional diffraction patterns from polycrystalline materials. Rev. High Pres. Sci. Tech. 22, 144–152 (2012).

    Article  Google Scholar 

  45. 45

    Singh, A. K., Balasingh, C., Mao, H.-K., Hemley, R. J. & Shu, J. Analysis of lattice strains measured under nonhydrostatic pressure. J. Appl. Phys. 83, 7567–7575 (1998).

    Article  Google Scholar 

  46. 46

    Isaak, D. G. High-temperature elasticity of iron-bearing olivines. J. Geophys. Res. 97, 1871–1885 (1992).

    Article  Google Scholar 

  47. 47

    Liu, W., Kung, J. & Li, B. Elasticity of San Carlos olivine to 8 GPa and 1073 K. Geophys. Res. Lett. 32, L16301 (2005).

    Article  Google Scholar 

  48. 48

    de Ronde, A. A., Dobson, D. P., Meredith, P. G. & Boon, S. A. Three-dimensional location and waveform analysis of microseismicity in multi-anvil experiments. Geophys. J. Int. 171, 1282–1294 (2007).

    Article  Google Scholar 

  49. 49

    Geiger, L. Probability method for the determination of earthquake epicenters from the arrival time only (translated from Geiger’s 1910 German article). Bull. St. Louis Univ. 8, 56–71 (1912).

    Google Scholar 

  50. 50

    Paterson, M. S. The determination of hydroxyl by infrared absorption in quartz, silicate glasses and similar materials. Bull. Minér. 105, 20–29 (1982).

    Google Scholar 

Download references

Acknowledgements

We thank T. Kubo for discussion. An official review by R. Farla improved the manuscript. This research was conducted under the approval of SPring-8 (Nos. 2015A0075, 2015B0075, and 2016A0075) and supported by the JSPS through Grant-in-Aid for Scientific Research (Nos. 25220712, 25707040 and 16H04077).

Author information

Affiliations

Authors

Contributions

T.O. conceived the idea, conducted experiments, and wrote the manuscript. X.L. contributed to technical developments on the acoustic emissions measurement. H.O. took all the STEM micrographs. T.S. and K.F. contributed to TEM observations. Y.H. and Y.T. assisted in situ experiments. T.I. contributed to interpreting the results and writing the manuscript.

Corresponding author

Correspondence to Tomohiro Ohuchi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2202 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ohuchi, T., Lei, X., Ohfuji, H. et al. Intermediate-depth earthquakes linked to localized heating in dunite and harzburgite. Nature Geosci 10, 771–776 (2017). https://doi.org/10.1038/ngeo3011

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing