Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Snow precipitation on Mars driven by cloud-induced night-time convection

Abstract

Although it contains less water vapour than Earth’s atmosphere, the Martian atmosphere hosts clouds. These clouds, composed of water-ice particles, influence the global transport of water vapour and the seasonal variations of ice deposits. However, the influence of water-ice clouds on local weather is unclear: it is thought that Martian clouds are devoid of moist convective motions, and snow precipitation occurs only by the slow sedimentation of individual particles. Here we present numerical simulations of the meteorology in Martian cloudy regions that demonstrate that localized convective snowstorms can occur on Mars. We show that such snowstorms—or ice microbursts—can explain deep night-time mixing layers detected from orbit and precipitation signatures detected below water-ice clouds by the Phoenix lander. In our simulations, convective snowstorms occur only during the Martian night, and result from atmospheric instability due to radiative cooling of water-ice cloud particles. This triggers strong convective plumes within and below clouds, with fast snow precipitation resulting from the vigorous descending currents. Night-time convection in Martian water-ice clouds and the associated snow precipitation lead to transport of water both above and below the mixing layers, and thus would affect Mars’ water cycle past and present, especially under the high-obliquity conditions associated with a more intense water cycle.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Night-time mixing layers detected in radio-occultations from orbit are reproduced by mesoscale simulations.
Figure 2: The radiative effect of water-ice clouds at night triggers powerful convective plumes causing deep mixing layers and ice microbursts.
Figure 3: Water-ice convective microbursts provide a straightforward explanation for snow precipitation evidenced by the Phoenix LIDAR.

References

  1. Herschel, W. On the remarkable appearance of the polar regions of the planet Mars, the inclination of its axis, the position of its poles, and its spheroidical figure; with a few hints relative to its diameter. Phil. Trans. 24, 233–273 (1784).

    Google Scholar 

  2. Curran, R. J., Conrath, B. J., Hanel, R. A., Kunde, V. G. & Pearl, J. C. Mars: Mariner 9 spectroscopic evidence for H2O ice clouds. Science 182, 381–383 (1973).

    Article  Google Scholar 

  3. Kahn, R. The spatial and seasonal distribution of Martian clouds and some meteorological implications. J. Geophys. Res. 89, 6671–6688 (1984).

    Article  Google Scholar 

  4. Savijärvi, H. & Määttänen, A. Boundary-layer simulations for the Mars Phoenix lander site. Q. J. R. Meteorol. Soc. 136, 1497–1505 (2010).

    Article  Google Scholar 

  5. Clancy, R. T. et al. Water vapor saturation at low altitudes around Mars aphelion: a key to Mars climate. Icarus 122, 36–62 (1996).

    Article  Google Scholar 

  6. Wang, H. & Ingersoll, A. P. Martian clouds observed by Mars Global Surveyor Mars Orbiter Camera. J. Geophys. Res. 107, 5078 (2002).

    Article  Google Scholar 

  7. Madeleine, J.-B. et al. Aphelion water-ice cloud mapping and property retrieval using the OMEGA imaging spectrometer onboard Mars Express. J. Geophys. Res. 117, E00J07 (2012).

    Article  Google Scholar 

  8. Richardson, M. I., Wilson, R. J. & Rodin, A. V. Water ice clouds in the Martian atmosphere: general circulation model experiments with a simple cloud scheme. J. Geophys. Res. 107, 5064 (2002).

    Article  Google Scholar 

  9. Montmessin, F., Forget, F., Rannou, P., Cabane, M. & Haberle, R. M. Origin and role of water ice clouds in the Martian water cycle as inferred from a general circulation model. J. Geophys. Res. 109, 10004 (2004).

    Article  Google Scholar 

  10. Colaprete, A. & Toon, O. B. The radiative effects of Martian water ice clouds on the local atmospheric temperature profile. Icarus 145, 524–532 (2000).

    Article  Google Scholar 

  11. Wilson, R. J., Lewis, S. R., Montabone, L. & Smith, M. D. Influence of water ice clouds on Martian tropical atmospheric temperatures. Geophys. Res. Lett. 35, 7202 (2008).

    Google Scholar 

  12. Wilson, R. J., Neumann, G. A. & Smith, M. D. Diurnal variation and radiative influence of Martian water ice clouds. Geophys. Res. Lett. 34, 2710 (2007).

    Article  Google Scholar 

  13. Madeleine, J.-B., Forget, F., Millour, E., Navarro, T. & Spiga, A. The influence of radiatively active water ice clouds on the Martian climate. Geophys. Res. Lett. 39, L23202 (2012).

    Article  Google Scholar 

  14. Hinson, D. P. & Wilson, R. J. Temperature inversions, thermal tides, and water ice clouds in the Martian tropics. J. Geophys. Res. 109, 1002 (2004).

    Article  Google Scholar 

  15. Hinson, D. P. et al. Initial results from radio occultation measurements with the Mars Reconnaissance Orbiter: a nocturnal mixed layer in the tropics and comparisons with polar profiles from the Mars Climate Sounder. Icarus 243, 91–103 (2014).

    Article  Google Scholar 

  16. Smith, M. D. Interannual variability in TES atmospheric observations of Mars during 1999–2003. Icarus 167, 148–165 (2004).

    Article  Google Scholar 

  17. Pankine, A. A., Tamppari, L. K., Bandfield, J. L., McConnochie, T. H. & Smith, M. D. Retrievals of martian atmospheric opacities from MGS TES nighttime data. Icarus 226, 708–722 (2013).

    Article  Google Scholar 

  18. Hinson, D. P., Pätzold, M., Tellmann, S., Häusler, B. & Tyler, G. L. The depth of the convective boundary layer on Mars. Icarus 198, 57–66 (2008).

    Article  Google Scholar 

  19. Spiga, A., Forget, F., Lewis, S. R. & Hinson, D. P. Structure and dynamics of the convective boundary layer on Mars as inferred from Large-Eddy Simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010).

    Article  Google Scholar 

  20. Wilson, R. W. & Hamilton, K. Comprehensive model simulation of thermal tides in the Martian atmosphere. J. Atmos. Sci. 53, 1290–1326 (1996).

    Article  Google Scholar 

  21. Creasey, J. E., Forbes, J. M. & Hinson, D. P. Global and seasonal distribution of gravity wave activity in Mars’ lower atmosphere derived from MGS radio occultation data. Geophys. Res. Lett. 33, 1803 (2006).

    Google Scholar 

  22. Lee, C. et al. Thermal tides in the Martian middle atmosphere as seen by the Mars Climate Sounder. J. Geophys. Res. 114, E03005 (2009).

    Google Scholar 

  23. Spiga, A. & Forget, F. A new model to simulate the Martian mesoscale and microscale atmospheric circulation: validation and first results. J. Geophys. Res. 114, E02009 (2009).

    Article  Google Scholar 

  24. Spiga, A., Faure, J., Madeleine, J.-B., Määttänen, A. & Forget, F. Rocket dust storms and detached dust layers in the Martian atmosphere. J. Geophys. Res. 118, 746–767 (2013).

    Article  Google Scholar 

  25. Skamarock, W. C. & Klemp, J. B. A time-split nonhydrostatic atmospheric model for weather research and forecasting applications. J. Comput. Phys. 227, 3465–3485 (2008).

    Article  Google Scholar 

  26. Navarro, T. et al. Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res. 119, 1479–1495 (2014).

    Article  Google Scholar 

  27. Nicholls, S. The structure of radiatively driven convection in stratocumulus. Q. J. R. Meteorol. Soc. 115, 487–511 (1989).

    Article  Google Scholar 

  28. Imamura, T. et al. Inverse insolation dependence of Venus’ cloud-level convection. Icarus 228, 181–188 (2014).

    Article  Google Scholar 

  29. Hourdin, F., Le Van, P., Forget, F. & Talagrand, O. Meteorological variability and the annual surface pressure cycle on Mars. J. Atmos. Sci. 50, 3625–3640 (1993).

    Article  Google Scholar 

  30. Hourdin, F., Couvreux, F. & Menut, L. Parameterization of the dry convective boundary layer based on a mass flux representation of thermals. J. Atmos. Sci. 59, 1105–1123 (2002).

    Article  Google Scholar 

  31. Spiga, A. et al. The impact of Martian mesoscale winds on surface temperature and on the determination of thermal inertia. Icarus 212, 504–519 (2011).

    Article  Google Scholar 

  32. Michaels, T. I., Colaprete, A. & Rafkin, S. C. R. Significant vertical water transport by mountain-induced circulations on Mars. Geophys. Res. Lett. 33, L16201 (2006).

    Article  Google Scholar 

  33. Linkin, V. M. et al. VEGA balloon dynamics and vertical winds in the Venus middle cloud region. Science 231, 1417–1419 (1986).

    Article  Google Scholar 

  34. Byers, H. R. & Braham, R. R. Jr Thunderstorm structure and circulation. J. Meteorol. 5, 71–86 (1948).

    Article  Google Scholar 

  35. Wakimoto, R. M. & Bringi, V. N. Dual-polarization observations of microbursts associated with intense convection: the 20 July storm during the MIST project. Mon. Weather Rev. 116, 1521–1539 (1988).

    Article  Google Scholar 

  36. Whiteway, J. A. et al. Mars water-ice clouds and precipitation. Science 325, 68–70 (2009).

    Article  Google Scholar 

  37. Dickinson, C. et al. Lidar atmospheric measurements on Mars and Earth. Planet. Space Sci. 59, 942–951 (2011).

    Article  Google Scholar 

  38. Daerden, F. et al. Simulating observed boundary layer clouds on Mars. Geophys. Res. Lett. 37, L04203 (2010).

    Article  Google Scholar 

  39. Maltagliati, L. et al. Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science 333, 1868–1871 (2011).

    Article  Google Scholar 

  40. Chaffin, M. S., Deighan, J., Schneider, N. M. & Stewart, A. I. F. Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nat. Geosci. 10, 174–178 (2017).

    Article  Google Scholar 

  41. Forget, F., Haberle, R. M., Montmessin, F., Levrard, B. & Head, J. W. Formation of glaciers on Mars by atmospheric precipitation at high obliquity. Science 311, 368–371 (2006).

    Article  Google Scholar 

  42. Madeleine, J.-B. et al. Amazonian northern mid-latitude glaciation on Mars: a proposed climate scenario. Icarus 203, 390–405 (2009).

    Article  Google Scholar 

  43. Forget, F. et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24176 (1999).

    Article  Google Scholar 

  44. Hourdin, F. A new representation of the CO2 15 μm band for a Martian general circulation model. J. Geophys. Res. 97, 18319–18335 (1992).

    Article  Google Scholar 

  45. Madeleine, J.-B., Forget, F., Millour, E., Montabone, L. & Wolff, M. J. Revisiting the radiative impact of dust on Mars using the LMD Global Climate Model. J. Geophys. Res. 116, E11010 (2011).

    Article  Google Scholar 

  46. Määttänen, A. et al. Nucleation studies in the Martian atmosphere. J. Geophys. Res. 110, E02002 (2005).

    Article  Google Scholar 

  47. Colaïtis, A. et al. A thermal plume model for the Martian convective boundary layer. J. Geophys. Res. 118, 1468–1487 (2013).

    Article  Google Scholar 

  48. Tyler, D. & Barnes, J. R. Atmospheric mesoscale modeling of water and clouds during northern summer on Mars. Icarus 237, 388–414 (2014).

    Article  Google Scholar 

  49. Montabone, L. et al. Eight-year climatology of dust optical depth on Mars. Icarus 251, 65–95 (2015).

    Article  Google Scholar 

  50. Lilly, D. K. On the numerical simulation of buoyant convection. Tellus 14, 148–172 (1962).

    Article  Google Scholar 

  51. Tyler, D. & Barnes, J. R. Mesoscale modeling of the circulation in the Gale Crater region: an investigation into the complex forcing of convective boundary layer depths. Mars 8, 58–77 (2013).

    Google Scholar 

  52. Moeng, C. H., Dudhia, J., Klemp, J. & Sullivan, P. Examining two-way grid nesting for Large Eddy Simulation of the PBL using the WRF model. Mon. Weather Rev. 135, 2295–2311 (2007).

    Article  Google Scholar 

  53. Lewis, S. R. et al. A climate database for Mars. J. Geophys. Res. 104, 24177–24194 (1999).

    Article  Google Scholar 

  54. Millour, E. et al. & MCD/GCM Development Team The Mars Climate Database (MCD Version 5.2) (European Planetary Science Congress, EPSC2015-438, 2015).

  55. Lefèvre, M., Spiga, A. & Lebonnois, S. Three-dimensional turbulence-resolving modeling of the venusian cloud layer and induced gravity waves. J. Geophys. Res. 122, 134–149 (2017).

    Article  Google Scholar 

Download references

Acknowledgements

All model runs were carried out on the ‘mésocentre ESPRI’ computing facilities (ciclad cluster) in Institut Pierre-Simon Laplace (IPSL). A.S., J.-B.M., T.N., E.M., F.F. and F.M. acknowledge financial support for development of Martian atmospheric models and climate databases by European Space Agency (ESA) and Centre National d’Études Spatiales (CNES). A.S. acknowledges Centre National de la Recherche Scientifique (CNRS) for welcoming him in a part-time délégation position in 2014–2015 when the present study was initiated. A.S. acknowledges members from the ‘Earth Climate Modeling’ team at Laboratoire de Météorologie Dynamique for expertise on terrestrial moist convection.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the scientific discussions and manuscript writing. A.S. designed the study, developed the mesoscale model and Large-Eddy Simulations (LES) for Mars, performed all computer runs, and led manuscript writing. D.P.H. provided and analysed the radio-occultations measurements of night-time mixing layers. J.-B.M. and F.F. developed and validated the radiative model for dust and water-ice particles. T.N. and J.-B.M. developed and validated the microphysical water-ice cloud model. E.M. led the development and validation of the physical packages in the Global Climate Model and mesoscale model. F.F. and F.M. provided expertise on atmospheric modelling of Martian water-ice clouds.

Corresponding author

Correspondence to Aymeric Spiga.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1481 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Spiga, A., Hinson, D., Madeleine, JB. et al. Snow precipitation on Mars driven by cloud-induced night-time convection. Nature Geosci 10, 652–657 (2017). https://doi.org/10.1038/ngeo3008

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo3008

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing