Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Abundant carbon in the mantle beneath Hawai‘i

Abstract

Estimates of carbon concentrations in Earth’s mantle vary over more than an order of magnitude, hindering our ability to understand mantle structure and mineralogy, partial melting, and the carbon cycle. CO2 concentrations in mantle-derived magmas supplying hotspot ocean island volcanoes yield our most direct constraints on mantle carbon, but are extensively modified by degassing during ascent. Here we show that undegassed magmatic and mantle carbon concentrations may be estimated in a Bayesian framework using diverse geologic information at an ocean island volcano. Our CO2 concentration estimates do not rely upon complex degassing models, geochemical tracer elements, assumed magma supply rates, or rare undegassed rock samples. Rather, we couple volcanic CO2 emission rates with probabilistic magma supply rates, which are obtained indirectly from magma storage and eruption rates. We estimate that the CO2 content of mantle-derived magma supplying Hawai‘i’s active volcanoes is 0.97−0.19+0.25 wt%—roughly 40% higher than previously believed—and is supplied from a mantle source region with a carbon concentration of 263−62+81 ppm. Our results suggest that mantle plumes and ocean island basalts are carbon-rich. Our data also shed light on helium isotope abundances, CO2/Nb ratios, and may imply higher CO2 emission rates from ocean island volcanoes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Previous estimates of CO2/Nb and mantle carbon at ocean volcanoes.
Figure 2: Map of Kı̄lauea Volcano with schematic magma plumbing system.
Figure 3: Marginal PDFs for selected parameters and derived quantities.

Similar content being viewed by others

References

  1. Wallace, P. J. Volatiles in subduction zone magmas: concentrations and fluxes based on melt inclusion and volcanic gas data. J. Volcanol. Geotherm. Res. 140, 217–240 (2005).

    Article  Google Scholar 

  2. Hofmann, A. W., Farnetani, C. G., Spiegelman, M. & Class, C. Displaced helium and carbon in the Hawaiian plume. Earth Planet. Sci. Lett. 312, 226–236 (2011).

    Article  Google Scholar 

  3. Saal, A. E., Hauri, E. H., Langmuir, C. H. & Perfit, M. R. Vapour undersaturation in primitive mid-ocean-ridge basalt and the volatile content of Earth’s upper mantle. Nature 419, 451–455 (2002).

    Article  Google Scholar 

  4. Rosenthal, A., Hauri, E. H. & Hirschmann, M. M. Experimental determination of C, F, and H partitioning between mantle minerals and carbonated basalt, CO2/Ba and CO2/Nb systematics of partial melting, and the CO2 contents of basaltic source regions. Earth Planet. Sci. Lett. 412, 77–87 (2015).

    Article  Google Scholar 

  5. Gerlach, T. M., McGee, K. A., Elias, T., Sutton, A. J. & Doukas, M. P. Carbon dioxide emission rate of Kı̄lauea Volcano: implications for primary magma and the summit reservoir. J. Geophys. Res. 107, ECV 3–1–ECV 3–15 (2002).

    Article  Google Scholar 

  6. Poland, M. P., Miklius, A., Jeff Sutton, A. & Thornber, C. R. A mantle-driven surge in magma supply to Kı̄lauea Volcano during 2003–2007. Nat. Geosci. 5, 295–300 (2012).

    Article  Google Scholar 

  7. Swanson, D. A. Magma supply rate at Kilauea Volcano, 1952–1971. Science 175, 169–170 (1972).

    Article  Google Scholar 

  8. Gerlach, T. M. & Taylor, B. E. Carbon isotope constraints on degassing of carbon dioxide from Kilauea Volcano. Geochim. Cosmochim. Acta 54, 2051–2058 (1990).

    Article  Google Scholar 

  9. Gerlach, T. M. et al. Rates of volcanic CO2 degassing from airborne determinations of SO2 emission rates and plume CO2/SO2: test study at Pu‘u ‘O‘o Cone, Kilauea Volcano, Hawaii. Geophys. Res. Lett. 25, 2675–2678 (1998).

    Article  Google Scholar 

  10. Sutton, A., Elias, T., Kauahikaua, J. & Sutton, B. A. J. In The Pu‘u ‘Ō‘ō-Kūpaianaha Eruption of Kilauea Volcano, Hawai‘i: The First 20 Years (eds Heliker, C., Swanson, D. A. & Takahashi, T. J.) 137–148 (US Geological Survey Professional Paper 1676, 2003).

    Google Scholar 

  11. Anderson, K. R. & Poland, M. P. Bayesian estimation of magma supply, storage, and eruption rates using a multiphysical volcano model: Kı̄lauea Volcano, 2000–2012. Earth Planet. Sci. Lett. 447, 161–171 (2016).

    Article  Google Scholar 

  12. Werner, C. & Brantley, S. CO2 emissions from the Yellowstone volcanic system. Geochem. Geophys. Geosyst. 4, 1061 (2003).

    Google Scholar 

  13. Mosegaard, K. & Tarantola, A. Monte Carlo sampling of solutions to inverse problems. J. Geophys. Res. 100, 12431–12447 (1995).

    Article  Google Scholar 

  14. Swanson, D. A. et al. Cycles of explosive and effusive eruptions at Kı̄lauea Volcano, Hawaii. Geology 42, 631–634 (2014).

    Article  Google Scholar 

  15. Sides, I. R., Edmonds, M., Maclennan, J., Swanson, D. A. & Houghton, B. F. Eruption style at Kı̄lauea Volcano in Hawai‘i linked to primary melt composition. Nat. Geosci. 7, 464–469 (2014).

    Article  Google Scholar 

  16. Gerlach, T. M., Graebert, E. J., Graeber, E. J., Geralch, T. M. & Graeber, E. J. Volatile budget of Kilauea volcano. Nature 313, 273–277 (1985).

    Article  Google Scholar 

  17. Poland, M. P., Miklius, A. & Montgomery-Brown, E. K. In Magma Supply, Storage, and Transport at Shield-Stage Hawaiian Volcanoes (eds Poland, M. P., Takahashi, T. J. & Landowski, C.) Ch. 5, 179–234 (US Geological Survey Professional Paper 1801, 2014).

    Google Scholar 

  18. Torgersen, T. Terrestrial helium degassing fluxes and the atmospheric helium budget: implications with respect to the degassing processes of continental crust. Chem. Geol. 79, 1–14 (1989).

    Google Scholar 

  19. Roberge, J., White, R. V. & Wallace, P. J. Volatiles in submarine basaltic glasses from the Ontong Java Plateau (ODP Leg 192): implications for magmatic processes and source region compositions. Geol. Soc. Lond. Spec. Publ. 229, 239–257 (2004).

    Article  Google Scholar 

  20. Misumi, K., Yamanaka, Y. & Tajika, E. Numerical simulation of atmospheric and oceanic biogeochemical cycles to an episodic CO2 release event: implications for the cause of mid-Cretaceous Ocean Anoxic Event-1a. Earth Planet. Sci. Lett. 286, 316–323 (2009).

    Article  Google Scholar 

  21. Evans, W. C. et al. Magmatic intrusion west of Three Sisters, central Oregon, USA: the perspective from spring geochemistry. Geology 32, 69–72 (2004).

    Article  Google Scholar 

  22. Craddock, R. A. & Greeley, R. Minimum estimates of the amount and timing of gases released into the martian atmosphere from volcanic eruptions. Icarus 204, 512–526 (2009).

    Article  Google Scholar 

  23. Michael, P. J. & Graham, D. W. The behavior and concentration of CO2 in the suboceanic mantle: inferences from undegassed ocean ridge and ocean island basalts. Lithos 236–237, 338–351 (2015).

    Article  Google Scholar 

  24. Blundy, J., Cashman, K. V., Rust, A. & Witham, F. A case for CO2-rich arc magmas. Earth Planet. Sci. Lett. 290, 289–301 (2010).

    Article  Google Scholar 

  25. Bureau, H. et al. A melt and fluid inclusion study of the gas phase at Piton de la Fournaise volcano (Réunion Island). Chem. Geol. 147, 115–130 (1998).

    Article  Google Scholar 

  26. Aubaud, C., Pineau, F., Hékinian, R. & Javoy, M. Degassing of CO2 and H2O in submarine lavas from the Society hotspot. Earth Planet. Sci. Lett. 235, 511–527 (2005).

    Article  Google Scholar 

  27. Marty, B. & Tolstikhin, I. N. CO2 fluxes from mid-ocean ridges, arcs and plumes. Chem. Geol. 145, 233–248 (1998).

    Article  Google Scholar 

  28. Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Phil. Trans. R. Soc. B 361, 931–950 (2006).

    Article  Google Scholar 

  29. Dasgupta, R. & Hirschmann, M. M. The deep carbon cycle and melting in Earth’s interior. Earth Planet. Sci. Lett. 298, 1–13 (2010).

    Article  Google Scholar 

  30. Burton, M. R., Sawyer, G. M. & Granieri, D. Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75, 323–354 (2013).

    Article  Google Scholar 

  31. Helo, C., Longpré, M.-A., Shimizu, N., Clague, D. A. & Stix, J. Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nat. Geosci. 4, 260–263 (2011).

    Article  Google Scholar 

  32. Pietruszka, A. J. & Garcia, M. O. A rapid fluctuation in the mantle source and melting history of Kilauea Volcano inferred from the geochemistry of its historical summit lavas (1790–1982). J. Petrol. 40, 1321–1342 (1999).

    Article  Google Scholar 

  33. Marske, J. P., Garcia, M. O., Pietruszka, A. J., Rhodes, J. M. & Norman, M. D. Geochemical variations during Kīlauea’s Pu‘u ‘Ō‘ō eruption reveal a fine-scale mixture of mantle heterogeneities within the Hawaiian Plume. J. Petrol. 49, 1297–1318 (2008).

    Article  Google Scholar 

  34. Blaser, A. et al. Effect of CO2 Content on Magma Supply Rate at Kilauea Volcano, Hawaiiabstr. EGU2014-9862-1 (EGU General Assembly, 2014).

    Google Scholar 

  35. Deines, P. In Early Organic Evolution: Implications for Mineral and Energy Resources (eds Schidlowsk, M., Golubic, S., Kimberley, M. M., McKirdy, D. M. & Trudinger, P. A.) 133–146 (Springer, 1992).

    Book  Google Scholar 

  36. Dasgupta, R. & Hirschmann, M. M. Melting in the Earth’s deep upper mantle caused by carbon dioxide. Nature 440, 659–662 (2006).

    Article  Google Scholar 

  37. Cottrell, E. & Kelley, K. A. Redox heterogeneity in mid-ocean ridge basalts as a function of mantle source. Science 340, 1314–1317 (2013).

    Article  Google Scholar 

  38. Hirschmann, M. M. & Dasgupta, R. The H/C ratios of Earth’s near-surface and deep reservoirs, and consequences for deep Earth volatile cycles. Chem. Geol. 262, 4–16 (2009).

    Article  Google Scholar 

  39. Anderson, D. L. The helium paradoxes. Proc. Natl Acad. Sci. USA 95, 4822–4827 (1998).

    Article  Google Scholar 

  40. Porcelli, D. & Ballentine, C. J. Models for distribution of terrestrial noble gases and evolution of the atmosphere. Rev. Mineral. Geochem. 47, 411–480 (2002).

    Article  Google Scholar 

  41. Hilton, D. R., McMurtry, G. M. & Kreulen, R. Evidence for extensive degassing of the Hawaiian mantle plume from helium–carbon relationships at Kilauea Volcano. Geophys. Res. Lett. 24, 3065–3068 (1997).

    Article  Google Scholar 

  42. Ballentine, C. J., van Keken, P. E., Porcelli, D. & Hauri, E. H. Numerical models, geochemistry and the zero-paradox noble-gas mantle. Phil. Trans. R. Soc. A 360, 2611–2631 (2002).

    Article  Google Scholar 

  43. Gonnermann, H. M. & Mukhopadhyay, S. Non-equilibrium degassing and a primordial source for helium in ocean-island volcanism. Nature 449, 1037–1040 (2007).

    Article  Google Scholar 

  44. Moreira, M. A. & Kurz, M. D. Noble Gases as Tracers of Mantle Processes and Magmatic Degassing. in The Noble Gases as Geochemical Tracers (ed. Burnard, P.) 371–391 (Springer, 2013).

    Chapter  Google Scholar 

  45. Valbracht, P., Staudigel, H., Honda, M., McDougall, I. & Davies, G. Isotopic tracing of volcanic source regions from Hawaii: decoupling of gaseous from lithophile magma components. Earth Planet. Sci. Lett. 144, 185–198 (1996).

    Article  Google Scholar 

  46. Elias, T. & Sutton, A. J. Sulfur Dioxide Emission Rates from Kilauea Volcano, Hawaii, 2007–2010 (US Geological Survey Open File Report 2012-1107, 2012).

    Book  Google Scholar 

  47. Burton, M. R., Mader, H. M. & Polacci, M. The role of gas percolation in quiescent degassing of persistently active basaltic volcanoes. Earth Planet. Sci. Lett. 264, 46–60 (2007).

    Article  Google Scholar 

  48. Okada, Y. Surface deformation due to shear and tensile faults in a half-space. Bull. Seismol. Soc. Am. 75, 1135–1154 (1985).

    Google Scholar 

  49. Anderson, K. & Segall, P. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: application to Mount St. Helens 2004–2008. J. Geophys. Res. 118, 2017–2037 (2013).

    Article  Google Scholar 

  50. Elias, T. & Sutton, A. Sulfur Dioxide emission rates from Kilauea Volcano, Hawaii, an Update: 2002–2006 (US Geological Survey Open File Report 2007-1114, 2007).

    Google Scholar 

  51. Spinetti, C., Carrère, V., Buongiorno, M. F., Sutton, A. J. & Elias, T. Carbon dioxide of Pu‘u‘O‘o volcanic plume at Kilauea retrieved by AVIRIS hyperspectral data. Remote Sens. Environ. 112, 3192–3199 (2008).

    Article  Google Scholar 

  52. Crisp, J. A. Rates of magma emplacement and volcanic output. J. Volcanol. Geotherm. Res. 20, 177–211 (1984).

    Article  Google Scholar 

  53. Kurz, M. D., Jenkins, W. J., Hart, S. R. & Clague, D. Helium isotopic variations in volcanic rocks from Loihi Seamount and the Island of Hawaii. Earth Planet. Sci. Lett. 66, 388–406 (1983).

    Article  Google Scholar 

Download references

Acknowledgements

Work was supported in part by the USGS Mendenhall Research Fellowship Program. Many of the data utilized in this study were gathered by the scientists and staff of the USGS Hawaiian Volcano Observatory. We thank J. Lowenstern, P. Barry and H. Gonnermann for reviews. Any use of trade, firm, or product names is for descriptive purposes only and does not imply endorsement by the US Government.

Author information

Authors and Affiliations

Authors

Contributions

K.R.A. and M.P.P. conceptualized the project. K.R.A. developed the model and performed inversions. K.R.A. wrote the paper with assistance from M.P.P.

Corresponding author

Correspondence to Kyle R. Anderson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4402 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anderson, K., Poland, M. Abundant carbon in the mantle beneath Hawai‘i. Nature Geosci 10, 704–708 (2017). https://doi.org/10.1038/ngeo3007

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo3007

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing