Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Tidal controls on river delta morphology

Abstract

River delta degradation has been caused by extraction of natural resources, sediment retention by reservoirs, and sea-level rise. Despite global concerns about these issues, human activity in the world’s largest deltas intensifies. Harbour development, construction of flood defences, sand mining and land reclamation emerge as key contemporary factors that exert an impact on delta morphology. Tides interacting with river discharge can play a crucial role in the morphodynamic development of deltas under pressure. Emerging insights into tidal controls on river delta morphology suggest that—despite the active morphodynamics in tidal channels and mouth bar regions—tidal motion acts to stabilize delta morphology at the landscape scale under the condition that sediment import during low flows largely balances sediment export during high flows. Distributary channels subject to tides show lower migration rates and are less easily flooded by the river because of opposing non-linear interactions between river discharge and the tide. These interactions lead to flow changes within channels, and a more uniform distribution of discharge across channels. Sediment depletion and rigorous human interventions in deltas, including storm surge defence works, disrupt the dynamic morphological equilibrium and can lead to erosion and severe scour at the channel bed, even decades after an intervention.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The river-dominated part in the planform of a delta can often readily be distinguished from the tide-dominated part.
Figure 2: Trifurcations in the planform of a mouth bar complex indicate a strong tidal control on delta morphology.
Figure 3: In a predefined modelling domain, subaqueous patterns of channels and shoals can be predicted.
Figure 4: Intertidal areas are generally elevated above the embanked hinterland, which is caused by deposition of marine sediment during high tide and storm surges.
Figure 5: The construction of a storm surge barrier may result in unexpected morphological developments.

Similar content being viewed by others

References

  1. Renaud, F. G. et al. Tipping from the Holocene to the Anthropocene: How threatened are major world deltas? Curr. Opin. Env. Sustain. 5, 644–654 (2013).

    Google Scholar 

  2. Syvitski, J. P. M. et al. Sinking deltas due to human activities. Nat. Geosci. 2, 681–686 (2009).

    Google Scholar 

  3. Paola, C. et al. Natural processes in delta restoration: application to the Mississippi Delta. Annu. Rev. Mar. Sci. 3, 67–91 (2011).

    Google Scholar 

  4. Giosan, L., Constantinescu, S., Filip, F. & Deng, B. Maintenance of large deltas through channelization: nature versus humans in the Danube delta. Anthropocene 1, 35–45 (2013).

    Google Scholar 

  5. Giosan, L., Syvitski, J., Constantinescu, S. & Day, J. Climate change: protect the world’s deltas. Nature 516, 31–33 (2014).

    Google Scholar 

  6. Vellinga, N. E., Hoitink, A. J. F., van der Vegt, M., Zhang, W. & Hoekstra, P. Human impacts on tides overwhelm the effect of sea level rise on extreme water levels in the Rhine–Meuse delta. Coast. Eng. 90, 40–50 (2014).

    Google Scholar 

  7. Zhang, W. et al. Morphological change in the Pearl River Delta, China. Mar. Geol. 363, 202–219 (2015).

    Google Scholar 

  8. Auerbach, L. W. et al. Flood risk of natural and embanked landscapes on the Ganges-Brahmaputra tidal delta plain. Nat. Clim. Change 5, 153–157 (2015).

    Google Scholar 

  9. Nienhuis, J. H., Ashton, A. D. & Giosan, L. What makes a delta wave-dominated? Geology 43, 511–514 (2015).

    Google Scholar 

  10. Hoitink, A. J. F. & Jay, D. A. Tidal river dynamics: implications for deltas. Rev. Geophys. 54, 240–272 (2016).

    Google Scholar 

  11. Fagherazzi, S. & Overeem, I. Models of deltaic and inner continental shelf landform evolution. Annu. Rev. Earth Planet. Sci. 35, 685–715 (2007).

    Google Scholar 

  12. Ashworth, P. J., Best, J. L. & Parsons, D. R. Fluvial-Tidal Sedimentology Vol. 68 (Developments in Sedimentology, Elsevier, 2015).

    Google Scholar 

  13. Galloway, W. E. Process Framework for Describing the Morphologic and Stratigraphic Evolution of Deltaic Depositional Systems (Houston Geological Society, 1975).

    Google Scholar 

  14. Orton, G. J. & Reading, H. G. Variability of deltaic processes in terms of sediment supply, with particular emphasis on grain size. Sedimentology 40, 475–512 (1993).

    Google Scholar 

  15. Geleynse, N. et al. Controls on river delta formation; insights from numerical modelling. Earth Planet. Sci. Lett. 302, 217–226 (2011).

    Google Scholar 

  16. Passalacqua, P., Lanzoni, S., Paola, C. & Rinaldo, A. Geomorphic signatures of deltaic processes and vegetation: the Ganges–Brahmaputra–Jamuna case study. J. Geophys. Res. 118, 1838–1849 (2013).

    Google Scholar 

  17. Canestrelli, A., Fagherazzi, S., Defina, A. & Lanzoni, S. Tidal hydrodynamics and erosional power in the Fly River delta, Papua New Guinea. J. Geophys. Res. 115, F04033 (2010).

    Google Scholar 

  18. Canestrelli, A., Lanzoni, S. & Fagherazzi, S. One-dimensional numerical modeling of the long-term morphodynamic evolution of a tidally-dominated estuary: the Lower Fly River (Papua New Guinea). Sedim. Geol. 301, 107–119 (2014).

    Google Scholar 

  19. Hood, W. G. Tidal channel meander formation by depositional rather than erosional processes: examples from the prograding Skagit River Delta (Washington, USA). Earth Surf. Process. Landf. 35, 319–330 (2010).

    Google Scholar 

  20. Garofalo, D. The influence of wetland vegetation on tidal stream channel migration and morphology. Estuaries 3, 258–270 (1980).

    Google Scholar 

  21. Eisma, D. Intertidal Deposits: River Mouths, Tidal Flats, and Coastal Lagoons Vol. 16 (CRC Marine Science, CRC, 1998).

    Google Scholar 

  22. Hughes, Z. J. Tidal channels on tidal flats and marshes. Principles of Tidal Sedimentology 269–300 (Springer, 2012).

    Google Scholar 

  23. De Brye, B. et al. Preliminary results of a finite-element, multi-scale model of the Mahakam Delta (Indonesia). Ocean Dyn. 61, 1107–1120 (2011).

    Google Scholar 

  24. Sassi, M. G., Hoitink, A. J. F., de Brye, B., Vermeulen, B. & Deleersnijder, E. Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta. Ocean Dyn. 61, 2211–2228 (2011).

    Google Scholar 

  25. Sassi, M. G., Hoitink, A. J. F., Brye, d. B. & Deleersnijder, E. Downstream hydraulic geometry of a tidally influenced river delta. J. Geophys. Res. 117, F04022 (2012).

    Google Scholar 

  26. Salahuddin & Lambiase, J. J. Sediment dynamics and depositional systems of the Mahakam Delta, Indonesia: ongoing delta abandonment on a tide-dominated coast. J. Sedim. Res. 83, 503–521 (2013).

    Google Scholar 

  27. Guo, L., Van der Wegen, M., Roelvink, J. A. & He, Q. The role of river flow and tidal asymmetry on 1-D estuarine morphodynamics. J. Geophys. Res. 119, 2315–2334 (2014).

    Google Scholar 

  28. Gugliotta, M. et al. Process regime, salinity, morphological, and sedimentary trends along the fluvial to marine transition zone of the mixed-energy Mekong River delta, Vietnam. Cont. Shelf Res. http://dx.doi.org/10.1016/j.csr.2017.03.001 (2017).

  29. Kästner, K., Hoitink, A. J. F., Vermeulen, B., Geertsema, T. J. & Ningsih, N. S. Distributary channels in the fluvial to tidal transition zone. J. Geophys. Res. 122, 696–710 (2017).

    Google Scholar 

  30. Tamura, T. et al. Origin and evolution of interdistributary delta plains; insights from Mekong River delta. Geology 40, 303–306 (2012).

    Google Scholar 

  31. Korus, J. T. & Fielding, C. R. Asymmetry in Holocene river deltas: patterns, controls, and stratigraphic effects. Earth-Sci. Rev. 150, 219–242 (2015).

    Google Scholar 

  32. Leonardi, N., Canestrelli, A., Sun, T. & Fagherazzi, S. Effect of tides on mouth bar morphology and hydrodynamics. J. Geophys. Res. 118, 4169–4183 (2013).

    Google Scholar 

  33. Leonardi, N., Sun, T. & Fagherazzi, S. Modeling tidal bedding in distributary-mouth bars. J. Sedim. Res. 84, 499–512 (2014).

    Google Scholar 

  34. Edmonds, D. A. & Slingerland, R. L. Mechanics of river mouth bar formation: implications for the morphodynamics of delta distributary networks. J. Geophys. Res. 112, F02034 (2007).

    Google Scholar 

  35. Goodbred, S. L. Jr & Saito, Y. Principles of Tidal Sedimentology 129–149 (Springer, 2012).

    Google Scholar 

  36. Ernstsen, V. B. et al. Quantification of dune dynamics during a tidal cycle in an inlet channel of the Danish Wadden Sea. Geo-Mar. Lett. 26, 151–163 (2006).

    Google Scholar 

  37. Lefebvre, A., Ernstsen, V. B. & Winter, C. Influence of compound bedforms on hydraulic roughness in a tidal environment. Ocean Dyn. 61, 2201–2210 (2011).

    Google Scholar 

  38. Kwoll, E., Becker, M. & Winter, C. With or against the tide: the influence of bed form asymmetry on the formation of macroturbulence and suspended sediment patterns. Wat. Resour. Res. 50, 7800–7815 (2014).

    Google Scholar 

  39. Hoitink, A. J. F., Buschman, F. A. & Vermeulen, B. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river. Wat. Resour. Res. 45, W11406 (2009).

    Google Scholar 

  40. Bradley, R. W. et al. Flow and sediment suspension events over low-angle dunes: Fraser Estuary, Canada. J. Geophys. Res. 118, 1693–1709 (2013).

    Google Scholar 

  41. Hendershot, M. L. et al. Response of low-angle dunes to variable flow. Sedimentology 63, 743–760 (2016).

    Google Scholar 

  42. Baas, J. H., Best, J. L. & Peakall, J. Predicting bedforms and primary current stratification in cohesive mixtures of mud and sand. J. Geol. Soc. 173, 12–45 (2015).

    Google Scholar 

  43. Schindler, R. J. et al. Sticky stuff: redefining bedform prediction in modern and ancient environments. Geology 43, 399–402 (2015).

    Google Scholar 

  44. O’Brien, M. P. Estuary tidal prisms related to entrance areas. Civil Eng. 1, 738–739 (1931).

    Google Scholar 

  45. Jarrett, J. T. Tidal Prism-Inlet Area Relationships (Technical Report DTIC Document, U.S. Army Coastal Eng. Res. Cent., 1976).

  46. Gerritsen, F. Morphological stability of inlets and tidal channels in the western Wadden Sea. InPresent and Future Conservation of the Wadden Sea: Proc. 7th Int. Wadden Sea Symp. (eds Dankers, N. M. J. A., Smit, C. J. & Scholl, M.) 151–160 (Netherlands Institute for Sea Research (NIOZ), 1992).

    Google Scholar 

  47. Gao, S. & Collins, M. Tidal inlet equilibrium, in relation to cross-sectional area and sediment transport patterns. Estuar. Coast. Shelf Sci. 38, 157–172 (1994).

    Google Scholar 

  48. Townend, I. H. An examination of empirical stability relationships for UK estuaries. J. Coast. Res. 21, 1042–1053 (2005).

    Google Scholar 

  49. D’Alpaos, A., Lanzoni, S., Marani, M. & Rinaldo, A. On the tidal prism–channel area relations. J. Geophys. Res. 115, F01003 (2010).

    Google Scholar 

  50. Guo, L., Van der Wegen, M., Roelvink, D. J. A., Wang, Z. B. & He, Q. Long-term, process-based morphodynamic modeling of a fluvio-deltaic system, part I: the role of river discharge. Cont. Shelf Res. 109, 95–111 (2015).

    Google Scholar 

  51. Stefanon, L., Carniello, L., D’Alpaos, A. & Lanzoni, S. Experimental analysis of tidal network growth and development. Cont. Shelf Res. 30, 950–962 (2010).

    Google Scholar 

  52. Zhou, Z. et al. A comparative study of physical and numerical modeling of tidal network ontogeny. J. Geophys. Res. 119, 892–912 (2014).

    Google Scholar 

  53. Boon, J. D. & Byrne, R. J. On basin hypsometry and the morphodynamic response of coastal inlet systems. Mar. Geol. 40, 27–48 (1981).

    Google Scholar 

  54. Wang, Z. B., Jeuken, M. C. J. L., Gerritsen, H., De Vriend, H. J. & Kornman, B. A. Morphology and asymmetry of the vertical tide in the Westerschelde estuary. Cont. Shelf Res. 22, 2599–2609 (2002).

    Google Scholar 

  55. Townend, I. H. Hypsometry of estuaries, creeks and breached sea wall sites. Proc. Institution Civil Eng.-Maritime Eng. Vol. 161, 23–32 (Thomas Telford Ltd, 2008).

    Google Scholar 

  56. Walton, T. L. & Adams, W. D. Capacity of inlet outer ears to store sand. Coast. Eng. Proc. 1, 1919–1937 (1976).

    Google Scholar 

  57. Mariotti, G. & Fagherazzi, S. Critical width of tidal flats triggers marsh collapse in the absence of sea-level rise. Proc. Natl Acad. Sci. USA 110, 5353–5356 (2013).

    Google Scholar 

  58. Zhou, Z. et al. Is morphodynamic equilibrium an oxymoron? Earth-Sci. Rev. 165, 257–267 (2016).

    Google Scholar 

  59. Schuttelaars, H. M. & Swart, H. E. d. Multiple morphodynamic equilibria in tidal embayments. J. Geophys. Res. 105, 24105–24118 (2000).

    Google Scholar 

  60. Bolla Pittaluga, M. et al. Where river and tide meet: the morphodynamic equilibrium of alluvial estuaries. J. Geophys. Res. 120, 75–94 (2015).

    Google Scholar 

  61. Edmonds, D. A. & Slingerland, R. L. Significant effect of sediment cohesion on delta morphology. Nat. Geosci. 3, 105–109 (2010).

    Google Scholar 

  62. Van Prooijen, B. C. & Wang, Z. B. A 1D model for tides waves and fine sediment in short tidal basins—application to the Wadden Sea. Ocean Dyn. 63, 1233–1248 (2013).

    Google Scholar 

  63. Hibma, A., De Vriend, H. J. & Stive, M. J. F. Numerical modelling of shoal pattern formation in well-mixed elongated estuaries. Estuar. Coast. Shelf Sci. 57, 981–991 (2003).

    Google Scholar 

  64. Marciano, R., Wang, Z. B., Hibma, A., de Vriend, H. J. & Defina, A. Modeling of channel patterns in short tidal basins. J. Geophys. Res. 110, F01001 (2005).

    Google Scholar 

  65. Van der Wegen, M. & Roelvink, J. A. Long-term morphodynamic evolution of a tidal embayment using a two-dimensional, process-based model. J. Geophys. Res. 113, C03016 (2008).

    Google Scholar 

  66. Dastgheib, A., Roelvink, J. A. & Wang, Z. B. Long-term process-based morphological modeling of the Marsdiep Tidal Basin. Mar. Geol. 256, 90–100 (2008).

    Google Scholar 

  67. Van Maanen, B., Coco, G. & Bryan, K. R. Modelling the effects of tidal range and initial bathymetry on the morphological evolution of tidal embayments. Geomorphology 191, 23–34 (2013).

    Google Scholar 

  68. Luan, H. L., Ding, P. X., Wang, Z. B. & Ge, J. Z. Process-based morphodynamic modeling of the Yangtze Estuary at a decadal timescale: controls on estuarine evolution and future trends. Geomorphology 290, 347–364 (2017).

    Google Scholar 

  69. Lanzoni, S. & D’Alpaos, A. On funneling of tidal channels. J. Geophys. Res. 120, 433–452 (2015).

    Google Scholar 

  70. De Vries, M. A morphological time-scale for rivers. InProc. IAHR Congress Sao Paulo (Brazil) 2, 17–23 (Delft Hydraulics Laboratory, 1975).

    Google Scholar 

  71. Di Silvio, G. & Nones, M. Morphodynamic reaction of a schematic river to sediment input changes: analytical approaches. Geomorphology 215, 74–82 (2014).

    Google Scholar 

  72. Dam, G., Wegen, M., Labeur, R. J. & Roelvink, J. A. Modeling centuries of estuarine morphodynamics in the Western Scheldt estuary. Geophys. Res. Lett. 43, 3839–3847 (2016).

    Google Scholar 

  73. Van de Kreeke, J. & Robaczewska, K. Tide-induced residual transport of coarse sediment; application to the Ems estuary. Neth. J. Sea Res. 31, 209–220 (1993).

    Google Scholar 

  74. Chu, A., Wang, Z. B. & de Vriend, H. J. Analysis on residual coarse sediment transport in estuaries. Estuar. Coast. Shelf Sci. 163, 194–205 (2015).

    Google Scholar 

  75. Guo, L., Van der Wegen, M., Wang, Z. B., Roelvink, D. & He, Q. Exploring the impacts of multiple tidal constituents and varying river flow on long-term, large-scale estuarine morphodynamics by means of a 1-D model. J. Geophys. Res. 121, 1000–1022 (2016).

    Google Scholar 

  76. Wang, Z. B. et al. Morphodynamics of the Wadden Sea and its barrier island system. Ocean Coast. Manag. 68, 39–57 (2012).

    Google Scholar 

  77. Stive, M. J. F., Capobianco, M., Wang, Z. B., Ruol, P. & Buijsman, M. C. Physics of Estuaries and Coastal Seas 397–407 (Balkema Rotterdam, 1998).

    Google Scholar 

  78. Fagherazzi, S. & Furbish, D. J. On the shape and widening of salt marsh creeks. J. Geophys. Res. 106, 991–1003 (2001).

    Google Scholar 

  79. Stive, M. J. F. & Wang, Z. B. Morphodynamic modeling of tidal basins and coastal inlets. Elsevier Oceanogr. Ser. 67, 367–392 (2003).

    Google Scholar 

  80. Spearman, J. R. in River, Coastal and Estuarine Morphodynamics (eds Dohmen-Janssen, C. M. & Hulscher, S. J. M. H.) 171–178 (Taylor & Francis, 2007).

    Google Scholar 

  81. Townend, I. H., Wang, Z. B., Stive, M. J. F. & Zhou, Z. Development and extension of an aggregated scale model: Part 1—background to ASMITA. China Ocean Engineering 30, 483–504 (2016).

    Google Scholar 

  82. Townend, I. H., Wang, Z. B. & Rees, J. G. Millennial to annual volume changes in the Humber Estuary. Proc. R. Soc. A 463, 837–854 (2007).

    Google Scholar 

  83. Wang, Z. B. & Townend, I. H. Influence of the nodal tide on the morphological response of estuaries. Mar. Geol. 291, 73–82 (2012).

    Google Scholar 

  84. Hu, Z., Wang, Z. B., Zitman, T. J., Stive, M. J. F. & Bouma, T. J. Predicting long-term and short-term tidal flat morphodynamics using a dynamic equilibrium theory. J. Geophys. Res. 120, 1803–1823 (2015).

    Google Scholar 

  85. Fagherazzi, S. Self-organization of tidal deltas. Proc. Natl Acad. Sci. USA 105, 18692–18695 (2008).

    Google Scholar 

  86. Dalrymple, R. W., Zaitlin, B. A. & Boyd, R. Estuarine facies models: conceptual basis and stratigraphic implications: perspective. J. Sedim. Res. 62, 1130–1146 (1992).

    Google Scholar 

  87. Wilson, C. A. & Goodbred, S. L. Jr Construction and maintenance of the Ganges-Brahmaputra-Meghna delta: linking process, morphology, and stratigraphy. Annu. Rev. Mar. Sci. 7, 67–88 (2015).

    Google Scholar 

  88. Marani, M., Lanzoni, S., Zandolin, D., Seminara, G. & Rinaldo, A. Tidal meanders. Wat. Resour. Res. 38, 1225 (2002).

    Google Scholar 

  89. Furbish, D. J. River-bend curvature and migration: How are they related? Geology 16, 752–755 (1988).

    Google Scholar 

  90. Keevil, C. E., Parsons, D. R., Keevil, G. M. & Ainsley, M. Three-dimensional meander bend flow within the tidally influenced fluvial zone. Dev. Sedimentol. 68, 127–148 (2015).

    Google Scholar 

  91. Eke, E., Parker, G. & Shimizu, Y. Numerical modeling of erosional and depositional bank processes in migrating river bends with self-formed width: morphodynamics of bar push and bank pull. J. Geophys. Res. 119, 1455–1483 (2014).

    Google Scholar 

  92. Seminara, G. & Tubino, M. Sand bars in tidal channels. Part 1. Free bars. J. Fluid Mech. 440, 49–74 (2001).

    Google Scholar 

  93. Syvitski, J. P., Overeem, I., Brakenridge, G. R. & Hannon, M. Floods, floodplains, delta plains a satellite imaging approach. Sedim. Geol. 267, 1–14 (2012).

    Google Scholar 

  94. Dai, Z., Fagherazzi, S., Mei, X., Chen, J. & Meng, Y. Linking the infilling of the north branch in the Changjiang (Yangtze) estuary to anthropogenic activities from 1958 to 2013. Mar. Geol. 379, 1–12 (2016).

    Google Scholar 

  95. Berendsen, H. & Stouthamer, E. Late Weichselian and Holocene palaeogeography of the Rhine–Meuse delta, The Netherlands. Palaeogeogr. Palaeoclimatol. Palaeoecol. 161, 311–335 (2000).

    Google Scholar 

  96. Hijma, M. & Cohen, K. Holocene transgression of the Rhine river mouth area, The Netherlands/Southern North Sea: palaeogeography and sequence stratigraphy. Sedimentology 58, 1453–1485 (2011).

    Google Scholar 

  97. Huismans, Y., van Velzen, G., O’Mahoney, T., Hoffmans, G. & Wiersma, A. Scour hole development in river beds with mixed sand-clay-peat stratigraphy. In8th Int. Conf. Scour Erosion (Technical Committee ISO/TC213, 2016).

    Google Scholar 

  98. Sloff, K., Van Spijk, A., Stouthamer, E. & Sieben, A. Understanding and managing the morphology of branches incising into sand-clay deposits in the Dutch Rhine Delta. Int. J. Sedim. Res. 28, 127–138 (2013).

    Google Scholar 

  99. Zhang, W., Ruan, X., Zheng, J., Zhu, Y. & Wu, H. Long-term change in tidal dynamics and its cause in the Pearl River Delta, China. Geomorphology 120, 209–223 (2010).

    Google Scholar 

  100. Brunier, G., Anthony, E. J., Goichot, M., Provansal, M. & Dussouillez, P. Recent morphological changes in the Mekong and Bassac river channels, Mekong delta: the marked impact of river-bed mining and implications for delta destabilisation. Geomorphology 224, 177–191 (2014).

    Google Scholar 

  101. Vermeulen, B., Hoitink, A. J. F. & Labeur, R. J. Flow structure caused by a local cross-sectional area increase and curvature in a sharp river bend. J. Geophys. Res. 120, 1771–1783 (2015).

    Google Scholar 

  102. Wolanski, E., King, B. & Galloway, D. Dynamics of the turbidity maximum in the Fly River estuary, Papua New Guinea. Estuar. Coast. Shelf Sci. 40, 321–337 (1995).

    Google Scholar 

  103. Sassi, M. G., Hoitink, A. J. F., de Brye, B., Vermeulen, B. & Deleersnijder, E. Tidal impact on the division of river discharge over distributary channels in the Mahakam Delta. Ocean Dyn. 61, 2211–2228 (2011).

    Google Scholar 

  104. Bagnold, R. A. An Approach to the Sediment Transport Problem Geological Survey Professional Paper 422-I (United States Government Printing Office, 1966).

Download references

Acknowledgements

This study has been supported by the Netherlands Organization for Scientific Research (NWO), project 1022/01966/ALW, and by the Royal Netherlands Academy of Arts and Sciences (KNAW), project SPIN3-JRP-29. Z.B.W. received funding from the National Science Foundation in China (NSFC), project number 51320105005. We thank N. Leonardi (University of Liverpool) and L. Guo (East China Normal University) for making available the images we used to prepare Figs 2 and 3. We acknowledge Rijkswaterstaat for permission to publish the data shown in Fig. 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. F. Hoitink.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hoitink, A., Wang, Z., Vermeulen, B. et al. Tidal controls on river delta morphology. Nature Geosci 10, 637–645 (2017). https://doi.org/10.1038/ngeo3000

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo3000

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene