Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Remote detection of widespread indigenous water in lunar pyroclastic deposits

Abstract

Laboratory analyses of lunar samples provide a direct means to identify indigenous volatiles and have been used to argue for the presence of Earth-like water content in the lunar interior. Some volatile elements, however, have been interpreted as evidence for a bulk lunar mantle that is dry. Here we demonstrate that, for a number of lunar pyroclastic deposits, near-infrared reflectance spectra acquired by the Moon Mineralogy Mapper instrument onboard the Chandrayaan-1 orbiter exhibit absorptions consistent with enhanced OH- and/or H2O-bearing materials. These enhancements suggest a widespread occurrence of water in pyroclastic materials sourced from the deep lunar interior, and thus an indigenous origin. Water abundances of up to 150 ppm are estimated for large pyroclastic deposits, with localized values of about 300 to 400 ppm at potential vent areas. Enhanced water content associated with lunar pyroclastic deposits and the large areal extent, widespread distribution and variable chemistry of these deposits on the lunar surface are consistent with significant water in the bulk lunar mantle. We therefore suggest that water-bearing volcanic glasses from Apollo landing sites are not anomalous, and volatile loss during pyroclastic eruptions may represent a significant pathway for the transport of water to the lunar surface.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Map of ESPAT values at 2.85 μm and associated water contents derived from M3 spectra for ±35° latitude.
Figure 2: Visible images and water contents for select small dark mantle deposits.
Figure 3: Results for Aristarchus region.
Figure 4: Estimated water contents for select large pyroclastic deposits.

References

  1. Clark, R. N. Detection of adsorbed water and hydroxyl on the Moon. Science 326, 562–564 (2009).

    Article  Google Scholar 

  2. Pieters, C. M. Character and spatial distribution of OH/H2O on the surface of the Moon seen by M3 on Chandrayaan-1. Science 326, 568–572 (2009).

    Article  Google Scholar 

  3. Sunshine, J. et al. Temporal and spatial variability of lunar hydration as observed by the Deep Impact spacecraft. Science 326, 565–568 (2009).

    Article  Google Scholar 

  4. McCord, T. B. et al. Sources and physical processes responsible for OH/H2O in the lunar soil as revealed by the Moon Mineralogy Mapper (M3). J. Geophys. Res. 116, E00G05 (2011).

    Article  Google Scholar 

  5. Saal, A. et al. Volatile content of lunar volcanic glasses and the presence of water in the Moon’s interior. Nature 454, 192–195 (2008).

    Article  Google Scholar 

  6. Hauri, E. H., Saal, A. E., Rutherford, M. J. & Van Orman, J. A. Water in the Moon’s interior: truth and consequences. Earth Planet. Sci. Lett. 409, 252–264 (2015).

    Article  Google Scholar 

  7. Robinson, K. L. & Taylor, G. J. Heterogeneous distribution of water in the Moon. Nat. Geosci. 7, 401–408 (2014).

    Article  Google Scholar 

  8. Chen, Y. et al. Water, fluorine, and sulfur concentrations in the lunar mantle. Earth Planet. Sci. Lett. 427, 37–46 (2015).

    Article  Google Scholar 

  9. Sharp, Z. D., McCubbin, F. M. & Shearer, C. K. A hydrogen-based oxidation mechanism relevant to planetary formation. Earth Planet. Sci. Lett. 380, 88–97 (2013).

    Article  Google Scholar 

  10. Elkins-Tanton, L. T. & Grove, T. L. Water (hydrogen) in the lunar mantle: results from petrology and magma ocean modeling. Earth Planet. Sci. Lett. 307, 173–179 (2011).

    Article  Google Scholar 

  11. Sharp, Z. D., Shearer, C. K., McKeegan, K. D., Barnes, J. D. & Wang, Y. Q. The chlorine isotope composition of the Moon and implications for an anhydrous mantle. Science 329, 1050–1053 (2010).

    Article  Google Scholar 

  12. Albarède, F., Albalat, E. & Lee, C.-T. A. An intrinsic volatility scale relevant to the Earth and Moon and the status of water in the Moon. Meteorol. Planet. Sci. 50, 568–577 (2015).

    Article  Google Scholar 

  13. Klima, R., Cahill, J., Hagerty, J. & Lawrence, D. Remote detection of magmatic water in Bullialdus Crater on the Moon. Nat. Geosci. 6, 737–741 (2013).

    Article  Google Scholar 

  14. Bhattacharya, S. et al. Endogenic water on the Moon associated with nonmare silicic volcanism: implications for hydrated lunar interior. Curr. Sci. 105, 685–691 (2013).

    Google Scholar 

  15. Clark, R. N., Pieters, C. M., Green, R. O., Boardman, J. W. & Petro, N. E. Thermal removal from near-infrared imaging spectroscopy data of the Moon. J. Geophys. Res. 116, E00G16 (2011).

    Article  Google Scholar 

  16. Li, S. & Milliken, R. E. An empirical thermal correction model for Moon Mineralogy Mapper data constrained by laboratory spectra and Diviner temperatures. J. Geophys. Res. 121, 2081–2107 (2016).

    Article  Google Scholar 

  17. Weitz, C. M., Head, J. W. III & Pieters, C. Lunar regional dark mantle deposits: geologic, multispectral, and modeling studies. J. Geophys. Res. 103, 22725–22759 (1998).

    Article  Google Scholar 

  18. Gaddis, L. R., Staid, M. I., Tyburczy, J. A., Hawke, B. R. & Petro, N. E. Compositional analyses of lunar pyroclastic deposits. Icarus 161, 262–280 (2003).

    Article  Google Scholar 

  19. Gustafson, J. O., Bell, J. F., Gaddis, L. R., Hawke, B. R. & Giguere, T. A. Characterization of previously unidentified lunar pyroclastic deposits using Lunar Reconnaissance Orbiter Camera data. J. Geophys. Res. 117, E00H25 (2012).

    Article  Google Scholar 

  20. Hapke, B. Theory of Reflectance and Emittance Spectroscopy (Cambridge Univ. Press, 1993).

    Book  Google Scholar 

  21. McKay, D. S., Heiken, G., Basu, A., Blanford, G. & Simon, S. in Lunar Sourcebook: A User’s Guide to the Moon (eds Heiken, G. H., Vaniman, D. T. & French, B. M.) 283–356 (1991).

    Google Scholar 

  22. Liu, Y. et al. Direct measurement of hydroxyl in the lunar regolith and the origin of lunar surface water. Nat. Geosci. 5, 779–782 (2012).

    Article  Google Scholar 

  23. Stephant, A. & Robert, F. The negligible chondritic contribution in the lunar soils water. Proc. Natl Acad. Sci. USA 111, 15007–15012 (2014).

    Article  Google Scholar 

  24. Wilson, L. & Head, J. W. III Ascent and eruption of basaltic magma on the Earth and Moon. J. Geophys. Res. 86, 2971–3001 (1981).

    Article  Google Scholar 

  25. Arndt, J. & Engelhardt, W. Formation of Apollo 17 orange and black glass beads. J. Geophys. Res. 92, E372–E376 (1987).

    Article  Google Scholar 

  26. Arndt, J. & Engelhardt, W. V. Formation of Apollo 15 green glass beads. J. Geophys. Res. 89, C225–C232 (1984).

    Article  Google Scholar 

  27. Sunshine, J. M., Petro, N. E., Besse, S. & Gaddis, L. Widespread exposures of small scale spinel-rich pyroclastic deposits in Sinus Aestuum. In Proc. 45th Lunar Planet. Sci. Conf. 2297 (2014); https://www.hou.usra.edu/meetings/lpsc2014/pdf/2297.pdf

  28. Yamamoto, S. et al. A new type of pyroclastic deposit on the Moon containing Fe-spinel and chromite. Geophys. Res. Lett. 40, 4549–4554 (2013).

    Article  Google Scholar 

  29. Williams, K. B. et al. Reflectance spectroscopy of chromium-bearing spinel with application to recent orbital data from the Moon. Am. Mineral. 101, 726–734 (2016).

    Article  Google Scholar 

  30. Green, R. O. et al. The Moon Mineralogy Mapper (M3) imaging spectrometer for lunar science: instrument description, calibration, on-orbit measurements, science data calibration and on-orbit validation. J. Geophys. Res. 116, E00G19 (2011).

    Article  Google Scholar 

  31. Boardman, J. W. et al. Measuring moonlight: an overview of the spatial properties, lunar coverage, selenolocation, and related Level 1B products of the Moon Mineralogy Mapper. J. Geophys. Res. 116, E00G14 (2011).

    Article  Google Scholar 

  32. Hillier, J. K., Buratti, B. J. & Hill, K. Multispectral photometry of the Moon and absolute calibration of the Clementine UV/Vis camera. Icarus 141, 205–225 (1999).

    Article  Google Scholar 

  33. Buratti, B. J. et al. A wavelength-dependent visible and infrared spectrophotometric function for the Moon based on ROLO data. J. Geophys. Res. 116, E00G03 (2011).

    Article  Google Scholar 

  34. Lundeen, S., McLaughlin, S. & Alanis, R. Moon Mineralogy Mapper data product software interface specification. Jet Propul. Lab. v9.10, JPL D-39032 (2011).

    Google Scholar 

  35. Li, S. & Li, L. Radiative transfer modeling for quantifying lunar surface minerals, particle size, and submicroscopic metallic Fe. J. Geophys. Res. 116, E09001 (2011).

    Google Scholar 

  36. Milliken, R. E. & Mustard, J. F. Quantifying absolute water content of minerals using near-infrared reflectance spectroscopy. J. Geophys. Res. 110, E12001 (2005).

    Article  Google Scholar 

  37. Milliken, R. E. Estimating the Water Content of Geologic Materials Using Near-Infrared Reflectance Spectroscopy: Applications to Laboratory and Spacecraft Data PhD thesis, Brown Univ. (2006).

  38. Milliken, R. E. & Mustard, J. Estimating the water content of hydrated minerals using reflectance spectroscopy I. Effects of darkening agents and low-albedo materials. Icarus 189, 550–573 (2007).

    Article  Google Scholar 

  39. Milliken, R. E. & Mustard, J. Estimating the water content of hydrated minerals using reflectance spectroscopy II. Effects of particle size. Icarus 189, 574–588 (2007).

    Article  Google Scholar 

  40. Milliken, R. E. et al. Hydration state of the Martian surface as seen by Mars Express OMEGA: 2. H2O content of the surface. J. Geophys. Res. 112, E08S07 (2007).

    Article  Google Scholar 

  41. Audouard, J. et al. Water in the Martian regolith from OMEGA/Mars Express. J. Geophys. Res. 119, 1969–1989 (2014).

    Article  Google Scholar 

  42. Pommerol, A. & Schmitt, B. Strength of the H2O near-infrared absorption bands in hydrated minerals: effects of particle size and correlation with albedo. J. Geophys. Res. 113, E10009 (2008).

    Article  Google Scholar 

  43. Li, S. Water on the Lunar Surface as Seen by the Moon Mineralogy Mapper: Distribution, Abundance, and Origins PhD thesis, Brown Univ. (2016).

  44. Shimizu, K. et al. Two-component mantle melting-mixing model for the generation of mid-ocean ridge basalts: implications for the volatile content of the Pacific upper mantle. Geochim. Cosmochim. Acta 176, 44–80 (2016).

    Article  Google Scholar 

  45. Wetzel, D. T. Abundance, Speciation, and Role of Volatiles in Planetary Basalts PhD thesis, Brown Univ. (2014).

  46. Stolper, E. Water in silicate glasses: an infrared spectroscopic study. Contrib. Mineral. Petrol. 81, 1–17 (1982).

    Article  Google Scholar 

  47. Shkuratov, Y. G. Interpreting photometry of regolith-like surface with different topographies: shadowing and multiple scattering. Icarus 173, 3–15 (2005).

    Article  Google Scholar 

  48. Shkuratov, Y., Starukhina, L., Hoffmann, H. & Arnold, G. A model of spectral albedo of particulate surfaces: implications for optical properties of the Moon. Icarus 137, 235–246 (1999).

    Article  Google Scholar 

  49. Hapke, B. Bidirectional reflectance spectroscopy: 1. Theory. J. Geophys. Res. 86, 3039–3054 (1981).

    Article  Google Scholar 

Download references

Acknowledgements

This work was funded by the NASA Lunar Advanced Science and Exploration Research programme award number NNX12AO63G to R.E.M.

Author information

Authors and Affiliations

Authors

Contributions

R.E.M. wrote the manuscript, interpreted the data and contributed to data analysis. S.L. processed M3 data, made lab measurements and simulations, and contributed to data interpretation. S.L. initiated the draft for the Methods.

Corresponding author

Correspondence to Shuai Li.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 9090 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Milliken, R., Li, S. Remote detection of widespread indigenous water in lunar pyroclastic deposits. Nature Geosci 10, 561–565 (2017). https://doi.org/10.1038/ngeo2993

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2993

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing