Tsunamigenic structures in a creeping section of the Alaska subduction zone


Segments of subduction zones that are capable of generating tsunamigenic earthquakes appear to have characteristic structural configurations. These structures include heterogeneous plate interfaces, a small wedge of deformed sediment at the toe of the overriding plate (the frontal prism), and splay faults in the crust of the overriding plate that root within the plate boundary megathrust. Here we use seismic reflection imaging to show that these features also exist within a creeping segment of the Alaska subduction zone, the Shumagin Gap. We identify an active crustal-scale normal fault system that dips landward and resembles that involved in the 2011 Tohoku-oki earthquake in Japan. We also find that the Shumagin Gap has a small frontal prism, a deep-water splay fault, and that the plate interface here is rough and thinly sedimented. We propose that lateral propagation of rupture from a neighbouring segment into the Shumagin Gap may explain a tsunamigenic earthquake that occurred there in 1788 and that tsunamigenic potential should be considered in hazard assessments for the region. Our results demonstrate that structural configurations similar to those in Tohoku may exist in other subduction zones, including within creeping segments or segments with no record of historical megathrust earthquakes, but are under-recognized. Identifying similar configurations globally may improve our ability to anticipate regions capable of generating large tsunamis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Tectonic setting and extent of the Sanak and Unimak basins.
Figure 2: Reflection image and bathymetry profile for ALEUT Line 5.
Figure 3: Lower slope of ALEUT Lines 5 and 6.


  1. 1

    Kanamori, H. Mechanism of tsunami earthquakes. Phys. Earth Planet. Inter. 6, 346–359 (1972).

    Article  Google Scholar 

  2. 2

    Polet, J. & Kanamori, H. Shallow subduction zone earthquakes and their tsunamigenic potential. Geophys. J. Int. 142, 684–702 (2000).

    Article  Google Scholar 

  3. 3

    Tsuji, T. et al. Extension of continental crust by anelastic deformation during the 2011 Tohoku-oki earthquake: the role of extensional faulting in the generation of a great tsunami. Earth Planet. Sci. Lett. 364, 44–58 (2013).

    Article  Google Scholar 

  4. 4

    Okamura, Y. et al. Fore arc structure and plate boundary earthquake sources along the southwestern Kuril subduction zone. J. Geophys. Res. 113, B06305 (2008).

    Article  Google Scholar 

  5. 5

    Li, S. Y., Moreno, M., Rosenau, M., Melnick, D. & Oncken, O. Splay fault triggering by great subduction earthquakes inferred from finite element models. Geophys. Res. Lett. 41, 385–391 (2014).

    Article  Google Scholar 

  6. 6

    Xu, S. Q., Fukuyama, E., Yue, H. & Ampuero, J. P. Simple crack models explain deformation induced by subduction zone megathrust earthquakes. Bull. Seismol. Soc. Am. 106, 2275–2289 (2016).

    Article  Google Scholar 

  7. 7

    McKenzie, D. & Jackson, J. Tsunami earthquake generation by the release of gravitational potential energy. Earth Planet. Sci. Lett. 345, 1–8 (2012).

    Article  Google Scholar 

  8. 8

    Ide, S., Baltay, A. & Beroza, G. C. Shallow dynamic overshoot and energetic deep rupture in the 2011 M-w 9.0 Tohoku-Oki earthquake. Science 332, 1426–1429 (2011).

    Article  Google Scholar 

  9. 9

    Tsuji, T. et al. Potential tsunamigenic faults of the 2011 off the Pacific coast of Tohoku Earthquake. Earth Planets Space 63, 831–834 (2011).

    Article  Google Scholar 

  10. 10

    Klaeschen, D., Belykh, I., Gnibidenko, H., Patrikeyev, S. & Vonhuene, R. Structure of the Kuril trench from seismic-reflection records. J. Geophys. Res. 99, 24173–24188 (1994).

    Article  Google Scholar 

  11. 11

    Bilek, S. L. & Engdahl, E. R. Rupture characterization and aftershock relocations for the 1994 and 2006 tsunami earthquakes in the Java subduction zone. Geophys. Res. Lett. 34, L20311 (2007).

    Article  Google Scholar 

  12. 12

    Satake, K. Mechanism of the 1992 Nicaragua tsunami earthquake. Geophys. Res. Lett. 21, 2519–2522 (1994).

    Article  Google Scholar 

  13. 13

    Correa-Mora, F. et al. GPS-derived coupling estimates for the Central America subduction zone and volcanic arc faults: El Salvador, Honduras and Nicaragua. Geophys. J. Int. 179, 1279–1291 (2009).

    Article  Google Scholar 

  14. 14

    Nicolsky, D., Freymueller, J., Witter, R., Suleimani, E. & Koehler, R. Evidence for shallow megathrust slip across the Unalaska seismic gap during the great 1957 Andreanof Islands earthquake, eastern Aleutian Islands, Alaska. Geophys. Res. Lett. 43, 10328–10337 (2016).

    Article  Google Scholar 

  15. 15

    Lopez, A. M. & Okal, E. A. A seismological reassessment of the source of the 1946 Aleutian ‘tsunami’ earthquake. Geophys. J. Int. 165, 835–849 (2006).

    Article  Google Scholar 

  16. 16

    Davies, J., Sykes, L., House, L. & Jacob, K. Shumagin seismic gap, Alaska Peninsula—history of great earthquakes, tectonic setting, and evidence for high seismic potential. J. Geophys. Res. 86, 3821–3855 (1981).

    Article  Google Scholar 

  17. 17

    Fournier, T. J. & Freymueller, J. T. Transition from locked to creeping subduction in the Shumagin region, Alaska. Geophys. Res. Lett. 34, L06303 (2007).

    Article  Google Scholar 

  18. 18

    Kirby, S., Scholl, D., von Huene, R. & Wells, R. Alaska Earthquake Source for the SAFRR Tsunami Scenario: Chapter B in The SAFRR (Science Application for Risk Reduction) Tsunami Scenario 33–79 (Report No. 2331–1258, US Geological Survey, 2013).

  19. 19

    Wang, K. L. & Bilek, S. L. Invited review paper: fault creep caused by subduction of rough seafloor relief. Tectonophysics 610, 1–24 (2014).

    Article  Google Scholar 

  20. 20

    Bruns, T. R., von Huene, R., Culotta, R. C., Lewis, S. D. & Ladd, J. W. in Geology and Resource Potential of the Continental Margin of Western North America and Adjacent Ocean Basins, Beaufort Sea to Baja California Vol. 6 (eds Scholl, D. W., Grantz, A. & Vedder, J.) Ch. 8, 157–190 (Circum-Pacific Council for Energy and Mineral Resources, 1987).

    Google Scholar 

  21. 21

    Li, J. Y. et al. Downdip variations in seismic reflection character: implications for fault structure and seismogenic behavior in the Alaska subduction zone. J. Geophys. Res. 120, 7883–7904 (2015).

    Article  Google Scholar 

  22. 22

    Estabrook, C. H., Jacob, K. H. & Sykes, L. R. Body wave and surface-wave analysis of large and great earthquakes along the eastern Aleutian Arc, 1923–1993—implications for future events. J. Geophys. Res. 99, 11643–11662 (1994).

    Article  Google Scholar 

  23. 23

    Abers, G. A. Relationship between shallow-depth and intermediate-depth seismicity in the eastern Aleutian subduction zone. Geophys. Res. Lett. 19, 2019–2022 (1992).

    Article  Google Scholar 

  24. 24

    Shillington, D. J. et al. Link between plate fabric, hydration and subduction zone seismicity in Alaska. Nat. Geosci. 8, 961–964 (2015).

    Article  Google Scholar 

  25. 25

    Bilek, S. L. The role of subduction erosion on seismicity. Geology 38, 479–480 (2010).

    Article  Google Scholar 

  26. 26

    Moore, G. F. et al. Three-dimensional splay fault geometry and implications for tsunami generation. Science 318, 1128–1131 (2007).

    Article  Google Scholar 

  27. 27

    Tanioka, Y., Ruff, L. & Satake, K. What controls the lateral variation of large earthquake occurrence along the Japan Trench? Island Arc 6, 261–266 (1997).

    Article  Google Scholar 

  28. 28

    Saffer, D. M. & Wallace, L. M. The frictional, hydrologic, metamorphic and thermal habitat of shallow slow earthquakes. Nat. Geosci. 8, 594–600 (2015).

    Article  Google Scholar 

  29. 29

    Contreras-Reyes, E., Flueh, E. R. & Grevemeyer, I. Tectonic control on sediment accretion and subduction off south central Chile: implications for coseismic rupture processes of the 1960 and 2010 megathrust earthquakes. Tectonics 29, TC6018 (2010).

    Article  Google Scholar 

  30. 30

    Ito, Y. et al. Frontal wedge deformation near the source region of the 2011 Tohoku-Oki earthquake. Geophys. Res. Lett. 38, L00G05 (2011).

    Article  Google Scholar 

  31. 31

    Cubas, N., Avouac, J. P., Leroy, Y. M. & Pons, A. Low friction along the high slip patch of the 2011 Mw 9.0 Tohoku-Oki earthquake required from the wedge structure and extensional splay faults. Geophys. Res. Lett. 40, 4231–4237 (2013).

    Article  Google Scholar 

  32. 32

    Wendt, J., Oglesby, D. D. & Geist, E. L. Tsunamis and splay fault dynamics. Geophys. Res. Lett. 36, L15303 (2009).

    Article  Google Scholar 

  33. 33

    Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010).

    Article  Google Scholar 

  34. 34

    Hyndman, R. D. & Wang, K. Thermal constraints on the zone of major thrust earthquake failure—the cascadia subduction zone. J. Geophys. Res. 98, 2039–2060 (1993).

    Article  Google Scholar 

  35. 35

    Ammon, C. J. et al. Rupture process of the 2004 Sumatra-Andaman earthquake. Science 308, 1133–1139 (2005).

    Article  Google Scholar 

  36. 36

    Noda, H. & Lapusta, N. Stable creeping fault segments can become destructive as a result of dynamic weakening. Nature 493, 518–521 (2013).

    Article  Google Scholar 

  37. 37

    Freymueller, J. T. et al. Active Tectonics and Seismic Potential of Alaska 1–42 (American Geophysical Union, 2008).

    Google Scholar 

  38. 38

    Bird, P. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst. 4, 1027 (2003).

    Article  Google Scholar 

  39. 39

    Sella, G. F., Dixon, T. H. & Mao, A. L. REVEL: a model for recent plate velocities from space geodesy. J. Geophys. Res. 107, ETG 11-1–ETG-11–30 (2002).

    Article  Google Scholar 

  40. 40

    Abers, G. A., Hu, X. X. & Sykes, L. R. Source scaling of earthquakes in the Shumagin region, Alaska—time-domain inversions of regional wave-forms. Geophys. J. Int. 123, 41–58 (1995).

    Article  Google Scholar 

  41. 41

    Choo, J., Downton, J. & Dewar, J. Lift: A new and practical approach to noise and multiple attenuation. First Break 22, 39–44 (2004).

    Article  Google Scholar 

  42. 42

    Caress, D. W. & Chayes, D. N. New software for processing sidescan data from sidescan-capable multibeam sonars. In Proc. IEEE Oceans 95 Conf. 997–1000 (MTS/IEEE, 1995).

    Google Scholar 

  43. 43

    Hobro, J. W. D., Singh, S. C. & Minshull, T. A. Three-dimensional tomographic inversion of combined reflection and refraction seismic traveltime data. Geophys. J. Int. 152, 79–93 (2003).

    Article  Google Scholar 

  44. 44

    Zelt, C. A. & Smith, R. B. Seismic traveltime inversion for 2-D crustal velocity structure. Geophys. J. Int. 108, 16–34 (1992).

    Article  Google Scholar 

  45. 45

    Janiszewski, H. A., Abers, G. A., Shillington, D. J. & Calkins, J. A. Crustal structure along the Aleutian island arc: new insights from receiver functions constrained by active-source data. Geochem. Geophys. Geosyst. 14, 2977–2992 (2013).

    Article  Google Scholar 

  46. 46

    Abers, G. A. 3-dimensional inversion of regional p and s arrival times in the East Aleutians and sources of Subduction Zone Gravity Highs. J. Geophys. Res. 99, 4395–4412 (1994).

    Article  Google Scholar 

  47. 47

    Wiemer, S. & Wyss, M. Minimum magnitude of completeness in earthquake catalogs: examples from Alaska, the western United States, and Japan. Bull. Seismol. Soc. Am. 90, 859–869 (2000).

    Article  Google Scholar 

Download references


We gratefully acknowledge the captain, technical staff and crew of the RV Marcus G. Langseth and the Scripps OBS team who made this data set possible. This work was supported by the US National Science Foundation grants OCE-0926614 and EAR-1347312.

Author information




D.J.S., M.R.N. and S.C.W. obtained funding for the marine seismic programme. D.J.S., A.B., M.R.N., S.C.W. and M.D. collected marine data during the research cruise on RV Langseth. A.B., G.A.A., K.M.K., D.J.S., M.R.N. and D.M.S. obtained funding for seismicity and seismic data integration. A.B. conducted the MCS processing. D.J.S. performed the wide-angle reflection/refraction modelling. K.M.K. and G.A.A. analysed the seismicity data. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Anne Bécel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 135021 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bécel, A., Shillington, D., Delescluse, M. et al. Tsunamigenic structures in a creeping section of the Alaska subduction zone. Nature Geosci 10, 609–613 (2017). https://doi.org/10.1038/ngeo2990

Download citation

Further reading