Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state


Glacial climate is marked by abrupt, millennial-scale climate changes known as Dansgaard–Oeschger cycles. The most pronounced stadial coolings, Heinrich events, are associated with massive iceberg discharges to the North Atlantic. These events have been linked to variations in the strength of the Atlantic meridional overturning circulation. However, the factors that lead to abrupt transitions between strong and weak circulation regimes remain unclear. Here we show that, in a fully coupled atmosphere–ocean model, gradual changes in atmospheric CO2 concentrations can trigger abrupt climate changes, associated with a regime of bi-stability of the Atlantic meridional overturning circulation under intermediate glacial conditions. We find that changes in atmospheric CO2 concentrations alter the transport of atmospheric moisture across Central America, which modulates the freshwater budget of the North Atlantic and hence deep-water formation. In our simulations, a change in atmospheric CO2 levels of about 15 ppmv—comparable to variations during Dansgaard–Oeschger cycles containing Heinrich events—is sufficient to cause transitions between a weak stadial and a strong interstadial circulation mode. Because changes in the Atlantic meridional overturning circulation are thought to alter atmospheric CO2 levels, we infer that atmospheric CO2 may serve as a negative feedback to transitions between strong and weak circulation modes.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Transient simulations of the experiment CO2_Hys (left) and LGM_0.15_CO2 (right).
Figure 2: AMOC hysteresis and trend analysis in the increasing CO2 scenario of the experiment CO2_Hys.
Figure 3: Summary cartoon of the proposed mechanism in this study.
Figure 4: Synthesis of AMOC stability diagrams.


  1. 1

    Dansgaard, W. et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 364, 218–220 (1993).

    Article  Google Scholar 

  2. 2

    Barker, S. et al. 800,000 years of abrupt climate variability. Science 334, 347–351 (2011).

    Article  Google Scholar 

  3. 3

    Rahmstorf, S. Ocean circulation and climate during the past 120,000 years. Nature 419, 207–214 (2002).

    Article  Google Scholar 

  4. 4

    Stommel, H. Thermohaline convection with two stable regimes of flow. Tellus 13, 224–230 (1961).

    Article  Google Scholar 

  5. 5

    Ganopolski, A. & Rahmstorf, S. Rapid changes of glacial climate simulated in a coupled climate model. Nature 409, 153–158 (2001).

    Article  Google Scholar 

  6. 6

    McManus, J. F., Oppo, D. W. & Cullen, J. L. A 0.5-million-year record of millennial-scale climate variability in the North Atlantic. Science 283, 971–975 (1999).

    Article  Google Scholar 

  7. 7

    Wunsch, C. Abrupt climate change: an alternative view. Quat. Res. 65, 191–203 (2006).

    Article  Google Scholar 

  8. 8

    Zhang, X., Lohmann, G., Knorr, G. & Purcell, C. Abrupt glacial climate shifts controlled by ice sheet changes. Nature 512, 290–294 (2014).

    Article  Google Scholar 

  9. 9

    Zhang, X., Lohmann, G., Knorr, G. & Xu, X. Different ocean states and transient characteristics in Last Glacial Maximum simulations and implications for deglaciation. Clim. Past 9, 2319–2333 (2013).

    Article  Google Scholar 

  10. 10

    Menviel, L., Timmermann, A., Friedrich, T. & England, M. H. Hindcasting the continuum of Dansgaard–Oeschger variability: mechanisms, patterns and timing. Clim. Past 10, 63–77 (2014).

    Article  Google Scholar 

  11. 11

    Hemming, S. Heinrich events: massive Late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Rev. Geophys. 42, RG1005 (2004).

    Article  Google Scholar 

  12. 12

    Marcott, S. A. et al. Ice-shelf collapse from subsurface warming as a trigger for Heinrich events. Proc. Natl Acad. Sci. USA 108, 13415–13419 (2011).

    Article  Google Scholar 

  13. 13

    Bassis, J. N., Petersen, S. V. & Mac Cathles, L. Heinrich events triggered by ocean forcing and modulated by isostatic adjustment. Nature 542, 332–334 (2017).

    Article  Google Scholar 

  14. 14

    Bond, G. et al. A pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 278, 1257–1266 (1997).

    Article  Google Scholar 

  15. 15

    Barker, S. et al. Icebergs not the trigger for North Atlantic cold events. Nature 520, 333–336 (2015).

    Article  Google Scholar 

  16. 16

    Jouzel, J. et al. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science 317, 793–796 (2007).

    Article  Google Scholar 

  17. 17

    Stocker, T. F. & Johnsen, S. J. A minimum thermodynamic model for the bipolar seesaw. Paleoceanography 18, 1–9 (2003).

    Article  Google Scholar 

  18. 18

    Barker, S. & Knorr, G. A paleo-perspective on the AMOC as a tipping element. PAGES News 24, 14–15 (2016).

    Article  Google Scholar 

  19. 19

    Barker, S. & Knorr, G. Antarctic climate signature in the Greenland ice core record. Proc. Natl Acad. Sci. USA 104, 17278–17282 (2007).

    Article  Google Scholar 

  20. 20

    Bereiter, B. et al. Revision of the EPICA Dome C CO2 record from 800 to 600 kyr before present. Geophys. Res. Lett. 42, 1–8 (2015).

    Article  Google Scholar 

  21. 21

    Kawamura, K. et al. State dependence of climatic instability over the past 720,000 years from Antarctic ice cores and climate modeling. Sci. Adv. 3, 1–14 (2017).

    Google Scholar 

  22. 22

    Knorr, G. & Lohmann, G. Rapid transitions in the Atlantic thermohaline circulation triggered by global warming and meltwater during the last deglaciation. Geochem. Geophys. Geosyst. 8, Q12006 (2007).

    Article  Google Scholar 

  23. 23

    Banderas, R., Alvarez-Solas, J., Robinson, A. & Montoya, M. An interhemispheric mechanism for glacial abrupt climate change. Clim. Dynam. 44, 2897–2908 (2014).

    Article  Google Scholar 

  24. 24

    Ahn, J. & Brook, E. J. Siple Dome ice reveals two modes of millennial CO2 change during the last ice age. Nat. Commun. 5, 3723 (2014).

    Article  Google Scholar 

  25. 25

    Grant, K. M. et al. Rapid coupling between ice volume and polar temperature over the past 150,000 years. Nature 491, 744–747 (2012).

    Article  Google Scholar 

  26. 26

    Marcott, S. A. et al. Centennial-scale changes in the global carbon cycle during the last deglaciation. Nature 514, 616–619 (2014).

    Article  Google Scholar 

  27. 27

    Li, C., Battisti, D. S. & Bitz, C. M. Can North Atlantic Sea ice anomalies account for Dansgaard–Oeschger climate signals? J. Clim. 23, 5457–5475 (2010).

    Article  Google Scholar 

  28. 28

    Peterson, L. C., Haug, G. H., Hughen, K. A. & Roehl, U. Rapid changes in the hydrologic cycle of the tropical Atlantic during the last glacial. Science 290, 1947–1951 (2000).

    Article  Google Scholar 

  29. 29

    Voelker, A. H. L. Global distribution of centennial-scale records for Marine Isotope Stage (MIS) 3: a database. Quat. Sci. Rev. 21, 1185–1212 (2002).

    Article  Google Scholar 

  30. 30

    Lohmann, G. Atmospheric and oceanic freshwater transport during weak Atlantic overturning circulation. Tellus 5, 438–449 (2003).

    Article  Google Scholar 

  31. 31

    Rahmstorf, S. On the freshwater forcing and transport of the Atlantic thermohaline circulation. Clim. Dynam. 12, 799–811 (1996).

    Article  Google Scholar 

  32. 32

    Knorr, G. & Lohmann, G. Southern Ocean origin for the resumption of Atlantic thermohaline circulation during deglaciation. Nature 424, 532–536 (2003).

    Article  Google Scholar 

  33. 33

    Broecker, W. S., Bond, G., Klas, M., Bonani, G. & Wolfli, W. A salt oscillator in the glacial Atlantic? 1. The concept. Paleoceanography 5, 469–477 (1990).

    Article  Google Scholar 

  34. 34

    Schmidt, M. W., Vautravers, M. J. & Spero, H. J. Rapid subtropical North Atlantic salinity oscillations across Dansgaard–Oeschger cycles. Nature 443, 561–564 (2006).

    Article  Google Scholar 

  35. 35

    Zaucker, F. & Broecker, W. S. The influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin: general circulation model simulations and observations. J. Geophys. Res. 97, 2765–2773 (1992).

    Article  Google Scholar 

  36. 36

    Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) 1029–1136 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  37. 37

    Ahn, J. & Brook, E. J. Atmospheric CO2 and climate on millennial time scales during the last glacial period. Science 83, 83–85 (2008).

    Article  Google Scholar 

  38. 38

    Leduc, G. et al. Moisture transport across Central America as a positive feedback on abrupt climatic changes. Nature 445, 908–911 (2007).

    Article  Google Scholar 

  39. 39

    Peltier, W. R. & Vettoretti, G. Dansgaard-Oeschger oscillations predicted in a comprehensive model of glacial climate: a ‘kicked’ salt oscillator in the Atlantic. Geophys. Res. Lett. 41, 7306–7313 (2014).

    Article  Google Scholar 

  40. 40

    Schmittner, A. & Galbraith, E. D. Glacial greenhouse-gas fluctuations controlled by ocean circulation changes. Nature 456, 373–376 (2008).

    Article  Google Scholar 

  41. 41

    Roeckner, E. et al. The Atmospheric General Circulation Model ECHAM5. Part 1: Model Description Report No. 349, 1–127 (Max-Planck-Institut fuer Meteorologie, 2003).

  42. 42

    Brovkin, V., Raddatz, T., Reick, C. H., Claussen, M. & Gayler, V. Global biogeophysical interactions between forest and climate. Geophys. Res. Lett. 36, 1–5 (2009).

    Article  Google Scholar 

  43. 43

    Marsland, S. J., Haak, H., Jungclaus, J. H., Latif, M. & Röske, F. The Max-Planck-Institute global ocean/sea ice model with orthogonal curvilinear coordinates. Ocean Model. 5, 91–127 (2003).

    Article  Google Scholar 

  44. 44

    Hibler, W. III A dynamic thermodynamic sea ice model. J. Phys. Oceanogr. 9, 815–846 (1979).

    Article  Google Scholar 

  45. 45

    Jungclaus, J. H. et al. Climate and carbon-cycle variability over the last millennium. Clim. Past 6, 723–737 (2010).

    Article  Google Scholar 

  46. 46

    Knorr, G., Butzin, M., Micheels, A. & Lohmann, G. A warm Miocene climate at low atmospheric CO2 levels. Geophys. Res. Lett. 38, 1–5 (2011).

    Article  Google Scholar 

  47. 47

    Knorr, G. & Lohmann, G. Climate warming during Antarctic ice sheet expansion at the Middle Miocene transition. Nat. Geosci. 7, 2–7 (2014).

    Article  Google Scholar 

  48. 48

    Stepanek, C. & Lohmann, G. Modelling mid-Pliocene climate with COSMOS. Geosci. Model Dev. 5, 1221–1243 (2012).

    Article  Google Scholar 

  49. 49

    Wei, W., Lohmann, G. & Dima, M. Distinct modes of internal variability in the Global Meridional Overturning Circulation associated with the Southern Hemisphere westerly winds. J. Phys. Oceanogr. 42, 785–801 (2012).

    Article  Google Scholar 

  50. 50

    Wei, W. & Lohmann, G. Simulated Atlantic multidecadal oscillation during the Holocene. J. Clim. 25, 6989–7022 (2012).

    Article  Google Scholar 

  51. 51

    Abelmann, A. et al. The seasonal sea-ice zone in the glacial Southern Ocean as a carbon sink. Nat. Commun. 6, 8136 (2015).

    Article  Google Scholar 

  52. 52

    Gong, X., Knorr, G., Lohmann, G. & Zhang, X. Dependence of abrupt Atlantic meridional ocean circulation changes on climate background states. Geophys. Res. Lett. 40, 3698–3704 (2013).

    Article  Google Scholar 

  53. 53

    Köhler, P., Knorr, G. & Bard, E. Permafrost thawing as a possible source of abrupt carbon release at the onset of the Bølling/Allerød. Nat. Commun. 5, 5520 (2014).

    Article  Google Scholar 

Download references


X.Z. thanks G. Leduc for helpful discussion about marine sediment core MD02-2529. We thank colleagues in the Paleoclimate Dynamics group at the Alfred Wegener Institute Helmholtz Center for Polar and Marine Research (AWI) in Bremerhaven for general support and the AWI Computer Centre for keeping the supercomputer running. This study is supported by Helmholtz Postdoc Programme (PD-301), as well as the PACES program of the AWI and the BMBF funded project PalMod. The opening foundations of the Key Laboratory of Marine Sedimentology & Environmental Geology, SOA, (grant No. MASEG201701) and State Key Laboratory of Marine Geology, Tongji University (grant No. MGK1611) as well as the national Natural Science Foundation of China (grant No. 41575067) are grateful acknowledged (X.Z.). Furthermore, G.K. acknowledges funding by ‘Helmholtz Climate Initiative REKLIM’ (Regional Climate Change), a joint research project of the Helmholtz Association of German research centres (HGF). We also acknowledge financial support from the UK NERC (grants NE/J008133/1 and NE/L006405/1) to S.B.

Author information




All authors conceived the study. X.Z. designed and performed the model simulations, analysed the results, and led the write up of the manuscript with G.K. All authors interpreted the results and contributed to the final version of the manuscript.

Corresponding author

Correspondence to Xu Zhang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 13228 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Knorr, G., Lohmann, G. et al. Abrupt North Atlantic circulation changes in response to gradual CO2 forcing in a glacial climate state. Nature Geosci 10, 518–523 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing