Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Perspective
  • Published:

The deep atmosphere of Venus and the possible role of density-driven separation of CO2 and N2

Abstract

With temperatures around 700 K and pressures of around 75 bar, the deepest 12 km of the atmosphere of Venus are so hot and dense that the atmosphere behaves like a supercritical fluid. The Soviet VeGa-2 probe descended through the atmosphere in 1985 and obtained the only reliable temperature profile for the deep Venusian atmosphere thus far. In this temperature profile, the atmosphere appears to be highly unstable at altitudes below 7 km, contrary to expectations. We argue that the VeGa-2 temperature profile could be explained by a change in the atmospheric gas composition, and thus molecular mass, with depth. We propose that the deep atmosphere consists of a non-homogeneous layer in which the abundance of N2—the second most abundant constituent of the Venusian atmosphere after CO2—gradually decreases to near-zero at the surface. It is difficult to explain a decline in N2 towards the surface with known nitrogen sources and sinks for Venus. Instead we suggest, partly based on experiments on supercritical fluids, that density-driven separation of N2 from CO2 can occur under the high pressures of Venus’s deep atmosphere, possibly by molecular diffusion, or by natural density-driven convection. If so, the amount of nitrogen in the atmosphere of Venus is 15% lower than commonly assumed. We suggest that similar density-driven separation could occur in other massive planetary atmospheres.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Vertical structure of the atmosphere of Venus.
Figure 2: The VeGa-2 spacecraft.
Figure 3: Vertical profile of potential temperature θ computed from temperatures measured by VeGa-2.
Figure 4: Meridional distributions of the turbulent mixing coefficient and averaged stream function.

Similar content being viewed by others

References

  1. Crisp, D. & Titov, D. in Venus II, Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W., Hunten, D. M. & Phillips, R. J.) 353–384 (Univ. Arizona Press, 1997).

    Google Scholar 

  2. von Zahn, U., Kumar, S., Niemann, H. & Prinn, R. in Venus (eds Hunten, D. M., Colin, L., Donahue, T. M. & Moroz, V. I.) 299–430 (Univ. Arizona Press, 1983).

    Google Scholar 

  3. Taylor, F. W., Crisp, D. & Bézard, B. in Venus II, Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W., Hunten, D. M. & Phillips, R. J.) 325–351 (Univ. Arizona Press, 1997).

    Google Scholar 

  4. de Bergh, C. et al. The composition of the atmosphere of Venus below 100 km altitude: an overview. Planet. Space Sci. 54, 1389–1397 (2006).

    Article  Google Scholar 

  5. Esposito, L. W., Knollenberg, R. G., Marov, M. I., Toon, O. B. & Turco, R. P. The Clouds and Hazes of Venus 484–564 (Univ. Arizona Press, 1983).

    Google Scholar 

  6. Oertel, D. et al. Infrared spectrometry of Venus from Venera-15 and Venera-16. Adv. Space Res. 5, 25–36 (1985).

    Article  Google Scholar 

  7. Moroz, V. I., Linkin, V. M., Matsygorin, I. A., Spaenkuch, D. & Doehler, W. Venus spacecraft infrared radiance spectra and some aspects of their interpretation. Appl. Opt. 25, 1710–1719 (1986).

    Article  Google Scholar 

  8. Yakovlev, O. I., Matyugov, S. S. & Gubenko, V. N. Venera-15 and -16 middle atmosphere profiles from radio occultations: polar and near-polar atmosphere of Venus. Icarus 94, 493–510 (1991).

    Article  Google Scholar 

  9. Kliore, A. J. & Patel, I. R. Vertical structure of the atmosphere of Venus from Pioneer Venus orbiter radio occultations. J. Geophys. Res. 85, 7957–7962 (1980).

    Article  Google Scholar 

  10. Taylor, F. W. et al. Structure and meteorology of the middle atmosphere of Venus: infrared remote sounding from the Pioneer Orbiter. J. Geophys. Res. 85, 7963–8006 (1980).

    Article  Google Scholar 

  11. Hinson, D. P. & Jenkins, J. M. Magellan radio occultation measurements of atmospheric waves on Venus. Icarus 114, 310–327 (1995).

    Article  Google Scholar 

  12. Drossart, P. et al. Scientific goals for the observation of Venus by VIRTIS on ESA/Venus Express mission. Planet. Space Sci. 55, 1653–1672 (2007).

    Article  Google Scholar 

  13. Bertaux, J.-L. et al. SPICAV on Venus Express: three spectrometers to study the global structure and composition of the Venus atmosphere. Planet. Space Sci. 55, 1673–1700 (2007).

    Article  Google Scholar 

  14. Tellmann, S., Pätzold, M., Hausler, B., Bird, M. K. & Tyler, G. L. Structure of the Venus neutral atmosphere as observed by the radio science experiment VeRa on Venus Express. J. Geophys. Res. 114, E00B36 (2009).

    Article  Google Scholar 

  15. Keldysh, M. V. Venus exploration with the Venera 9 and Venera 10 spacecraft. Icarus 30, 605–625 (1977).

    Article  Google Scholar 

  16. Seiff, A. et al. Measurements of thermal structure and thermal contrasts in the atmosphere of Venus and related dynamical observations—results from the four Pioneer Venus probes. J. Geophys. Res. 85, 7903–7933 (1980).

    Article  Google Scholar 

  17. Linkin, V. M. et al. Vertical thermal structure in the Venus atmosphere from provisional Vega 2 temperature and pressure data. Sov. Astron. Lett. 12, 40–42 (1986).

    Google Scholar 

  18. Linkin, V. M., Blamont, J., Deviatkin, S. I., Ignatova, S. P. & Kerzhanovich, V. V. Thermal structure of the Venus atmosphere according to measurements with the Vega-2 lander. Kosm. Issled. 25, 659–672 (1987).

    Google Scholar 

  19. Bezard, B., de Bergh, C., Crisp, D. & Maillard, J.-P. The deep atmosphere of Venus revealed by high-resolution nightside spectra. Nature 345, 508–511 (1990).

    Article  Google Scholar 

  20. Pollack, J. B. et al. Near-infrared light from Venus’ nightside—a spectroscopic analysis. Icarus 103, 1–42 (1993).

    Article  Google Scholar 

  21. Meadows, V. S. & Crisp, D. Ground-based near-infrared observations of the Venus nightside: the thermal structure and water abundance near the surface. J. Geophys. Res. 101, 4595–4622 (1996).

    Article  Google Scholar 

  22. Seiff, A., Schofield, J. T. & Kliore, A. J. et al. Model of the structure of the atmosphere of Venus from surface to 100 km altitude. Adv. Space Res. 5, 3–58 (1985).

    Article  Google Scholar 

  23. Zasova, L. V., Ignatiev, N. I., Khatuntsev, I. A. & Linkin, V. Structure of the Venus atmosphere. Planet. Space Sci. 55, 1712–1728 (2007).

    Article  Google Scholar 

  24. Hoffman, J. H., Oyama, V. I. & von Zahn, U. Measurement of the Venus lower atmosphere composition—a comparison of results. J. Geophys. Res. 85, 7871–7881 (1980).

    Article  Google Scholar 

  25. von Zahn, U. & Moroz, V. Composition of the Venus atmosphere below 100 km altitude. Adv. Space Res. 5, 173–195 (1985).

    Article  Google Scholar 

  26. Avduevskii, V. S. et al. Automatic stations Venera 9 and Venera 10—Functioning of descent vehicles and measurement of atmospheric parameters. Cosm. Res. 14, 655–666 (1977).

    Google Scholar 

  27. Zasova, L. V., Moroz, V. I., Linkin, V. M., Khatuntsev, I. V. & Maiorov, B. S. Structure of the Venusian atmosphere from surface up to 100 km. Cosm. Res. 44, 364–383 (2006).

    Article  Google Scholar 

  28. Seiff A. & the VEGA Baloon Science Team, Further information on structure of the atmosphere of Venus derived from the VEGA Venus Balloon and Lander mission. Adv. Space Res. 7, 323–328 (1987).

  29. Gierasch, P. J. et al. in Venus II, Geology, Geophysics, Atmosphere, and Solar Wind Environment (eds Bougher, S. W., Hunten, D. M. & Phillips, R. J.) 459–500 (Univ. Arizona Press, 1997).

    Google Scholar 

  30. Hendry, D. et al. Exploration of high pressure equilibrium separations of nitrogen and carbon dioxide. J. CO2 Util. 3–4, 37–43 (2013).

    Article  Google Scholar 

  31. Spiga, A., Forget, F., Lewis, S. R. & Hinson, D. P. Structure and dynamics of the convective boundary layer on Mars as inferred from large-eddy simulations and remote-sensing measurements. Q. J. R. Meteorol. Soc. 136, 414–428 (2010).

    Article  Google Scholar 

  32. Read, P. L. et al. Global energy budgets and ‘Trenberth diagrams’ for the climates of terrestrial and gas giant planets. Q. J. R. Meteorol. Soc. 142, 703–720 (2016).

    Article  Google Scholar 

  33. Wordsworth, R. D. Atmospheric nitrogen evolution on Earth and Venus. Earth Planet. Sci. Lett. 447, 103–111 (2016).

    Article  Google Scholar 

  34. Espanani, R., Miller, A., Busick, A., Hendry, D. & Jacoby, W. Separation of N2/CO2 mixture using a continuous high-pressure density-driven separator. J. CO2 Util. 14, 67–75 (2016).

    Article  Google Scholar 

  35. Span, R. & Wagner, W. A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 MPa. J. Phys. Chem. Ref. Data 25, 1509–1596 (1996).

    Article  Google Scholar 

  36. Landau, L. D. & Lifshitz, E. M. Fluid Mechanics Vol. 6 (Pergamon, 1959).

    Google Scholar 

  37. Lebonnois, S., Sugimoto, N. & Gilli, G. Wave analysis in the atmosphere of Venus below 100-km altitude, simulated by the LMD Venus GCM. Icarus 278, 38–51 (2016).

    Article  Google Scholar 

  38. Lebonnois, S., Eymet, V., Lee, C. & Vatant d’Ollone, J. Analysis of the radiative budget of Venus atmosphere based on infrared Net Exchange Rate formalism. J. Geophys. Res. 120, 1186–1200 (2015).

    Article  Google Scholar 

  39. Charnay, B. & Lebonnois, S. Two boundary layers in Titan’s lower troposphere inferred from a climate model. Nat. Geosci. 5, 106–109 (2012).

    Article  Google Scholar 

  40. Lebonnois, S. et al. Superrotation of Venus’ atmosphere analysed with a full General Circulation Model. J. Geophys. Res. 115, E06006 (2010).

    Article  Google Scholar 

  41. Poling, B., Prausnitz, J. & O’Connell, J. The Properties of Gases and Liquids (McGraw-Hill, 2001).

    Google Scholar 

  42. Ledoux, P. Stellar models with convection and with discontinuity of the mean molecular weight. Astrophys. J. 105, 305–321 (1947).

    Article  Google Scholar 

  43. Hess, S. L. Static stability and thermal wind in an atmosphere of variable composition: applications to Mars. J. Geophys. Res. 84, 2969–2973 (1979).

    Article  Google Scholar 

  44. Pierrehumbert, R. T. Principles of Planetary Climate (Cambridge Univ. Press, 2010).

    Book  Google Scholar 

  45. Eymet, V. et al. Net-exchange parameterization of the thermal infrared radiative transfer in Venus’ atmosphere. J. Geophys. Res. 114, E11008 (2009).

    Article  Google Scholar 

  46. Stefani, S., Piccioni, G., Snels, M., Grassi, D. & Adriani, A. Experimental CO2 absorption coefficients at high pressure and high temperature. J. Quant. Spectrosc. Radiat. Transfer 117, 21–28 (2013).

    Article  Google Scholar 

  47. Haus, R., Kappel, D. & Arnold, G. Atmospheric thermal structure and cloud features in the southern hemisphere of Venus as retrieved from VIRTIS/VEX radiation measurements. Icarus 232, 232–248 (2014).

    Article  Google Scholar 

  48. Haus, R., Kappel, D. & Arnold, G. Radiative heating and cooling in the middle and lower atmosphere of Venus and responses to atmospheric and spectroscopic parameter variations. Planet. Space Sci. 117, 262–294 (2015).

    Article  Google Scholar 

  49. Crisp, D. Radiative forcing of the Venus mesosphere. I—Solar fluxes and heating rates. Icarus 67, 484–514 (1986).

    Article  Google Scholar 

  50. Lee, C. & Richardson, M. I. A discrete ordinate, multiple scattering, radiative transfer model of the Venus atmosphere from 0.1 to 260 μm. J. Atmos. Sci. 68, 1323–1339 (2011).

    Article  Google Scholar 

  51. Knollenberg, R. G. et al. The clouds of Venus: a synthesis report. J. Geophys. Res. 85, 8059–8081 (1980).

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank L. Zasova for providing the VeGa-2 probe temperature profile, and J. Bellan for mentioning barodiffusion and useful discussion on this phenomenon. S.L. acknowledges the support of the Centre National d’Etudes Spatiales. G.S. acknowledges the support of the Keck Institute for Space Studies under the project ‘Techniques and technologies for investigating the interior structure of Venus’.

Author information

Authors and Affiliations

Authors

Contributions

Both authors contributed equally to the manuscript.

Corresponding author

Correspondence to Sebastien Lebonnois.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 255 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lebonnois, S., Schubert, G. The deep atmosphere of Venus and the possible role of density-driven separation of CO2 and N2. Nature Geosci 10, 473–477 (2017). https://doi.org/10.1038/ngeo2971

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2971

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing