Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts

Abstract

Subduction of oceanic crust generates chemical and lithological heterogeneities in the mantle. An outstanding question is the extent to which these heterogeneities contribute to subsequent magmas generated by mantle melting, but the answer differs depending on the geochemical behaviour of the elements under investigation: analyses of incompatible elements (those that preferentially concentrate into silicate melts) suggest that recycled oceanic crust is an important contributor, whereas analyses of compatible elements (those that concentrate in crystalline residues) generally suggest it is not. Recently, however, the concentrations of Mn and Ni—two elements of varying compatibility—in early-crystallizing olivines, have been used to infer that erupted magmas are mixtures of partial melts of olivine-rich mantle rocks (that is, peridotite) and of metasomatic pyroxene-rich mantle rocks (that is, pyroxenite) formed by interaction between partial melts of recycled oceanic crust and peridotite. Here, we test whether melting of peridotite alone can explain the observed trend in olivine compositions by combining new experimental data on the partitioning of Mn between olivine and silicate melt under conditions relevant to basalt petrogenesis with earlier results on Ni partitioning. We show that the observed olivine compositions are consistent with melts of fertile peridotite at various pressures—importantly, melts from metasomatic pyroxenites are not required. Thus, although recycled materials may well be present in the mantle source regions of some basalts, the Mn and Ni data can be explained without such a contribution. Furthermore, the success of modelling the Mn–Ni contents of olivine phenocrysts as low-pressure crystallization products of partial melts of peridotite over a range of pressures implies a simple new approach for constraining depths of mantle melting.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Covariation of NiO89 and MnO89 in a global array of olivines.
Figure 2: Olivine–liquid manganese partition coefficients (DMnol/liq), by weight.
Figure 3: Model MnO and NiO contents of olivines during partial melting of peridotite.
Figure 4: Comparison of model peridotite melting results to natural olivine phenocryst NiO89 and MnO89 values.
Figure 5: NiO89/MnO89 as a function of depth to the lithosphere–asthenosphere boundary (LAB).

Similar content being viewed by others

References

  1. Allègre, C. J. & Turcotte, D. L. Implications of a two-component marble-cake mantle. Nature 323, 123–127 (1986).

    Article  Google Scholar 

  2. White, W. M. Oceanic island basalts and mantle plumes: the geochemical perspective. Annu. Rev. Earth Planet. Sci. 38, 133–160 (2010).

    Article  Google Scholar 

  3. Hofmann, A. W. Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–229 (1997).

    Article  Google Scholar 

  4. Stracke, A., Bizimis, M. & Salters, V. J. M. Recycling oceanic crust: quantitative constraints. Geochem. Geophys. Geosyst. 4, 8003 (2003).

    Google Scholar 

  5. Willbold, M. & Stracke, A. Trace element composition of mantle end-members: implications for recycling of oceanic and upper and lower continental crust. Geochem. Geophys. Geosyst. 7, Q04004 (2006).

    Article  Google Scholar 

  6. Sobolev, A. V. et al. The amount of recycled crust in sources of mantle-derived melts. Science 316, 412–417 (2007).

    Article  Google Scholar 

  7. Sobolev, A. V., Hofmann, A. W., Sobolev, S. V. & Nikogosian, I. K. An olivine-free mantle source of Hawaiian shield basalts. Nature 434, 590–597 (2005).

    Article  Google Scholar 

  8. Hirschmann, M. M. & Stolper, E. M. A possible role for garnet pyroxenite in the origin of the ‘garnet signature’ in MORB. Contrib. Mineral. Petrol. 124, 185–208 (1996).

    Article  Google Scholar 

  9. Kelemen, P. B., Hart, S. R. & Bernstein, S. Silica enrichment in the continental upper mantle via melt/rock reaction. Earth Planet. Sci. Lett. 164, 387–406 (1998).

    Article  Google Scholar 

  10. Lambart, S., Baker, M. B. & Stolper, E. M. The role of pyroxenite in basalt genesis: Melt-PX, a melting parameterization for mantle pyroxenites between 0.9 and 5 GPa. J. Geophys. Res. 121, 5708–5735 (2016).

    Article  Google Scholar 

  11. Li, C. & Ripley, E. M. The relative effects of composition and temperature on olivine-liquid Ni partitioning: statistical deconvolution and implications for petrologic modeling. Chem. Geol. 275, 99–104 (2010).

    Article  Google Scholar 

  12. Niu, Y., Wilson, M., Humphreys, E. R. & O’Hara, M. J. The origin of intra-plate ocean island basalts (OIB): the lid effect and its geodynamic implications. J. Petrol. 52, 1443–1468 (2011).

    Article  Google Scholar 

  13. Wang, Z. & Gaetani, G. A. Partitioning of Ni between olivine and siliceous eclogite partial melt: experimental constraints on the mantle source of Hawaiian basalts. Contrib. Mineral. Petrol. 156, 661–678 (2008).

    Article  Google Scholar 

  14. Ryabchikov, I. D. High NiO content in mantle-derived magmas as evidence for material transfer from the Earth’s core. Dokl. Earth Sci. 389A, 437–439 (2003).

    Google Scholar 

  15. Matzen, A. K., Baker, M. B., Beckett, J. R., Wood, B. J. & Stolper, E. M. The effect of liquid composition on the partitioning of Ni between olivine and silicate melt. Contrib. Mineral. Petrol. 172, 3 (2017).

    Article  Google Scholar 

  16. Matzen, A. K., Baker, M. B., Beckett, J. R. & Stolper, E. M. The temperature and pressure dependence of nickel partitioning between olivine and silicate melt. J. Petrol. 54, 2521–2545 (2013).

    Article  Google Scholar 

  17. Matzen, A. K., Baker, M. B., Beckett, J. R. & Stolper, E. M. Fe–Mg partitioning between olivine and high-magnesian melts and the nature of Hawaiian parental liquids. J. Petrol. 52, 1243–1263 (2011).

    Article  Google Scholar 

  18. Kohn, S. C. & Schofield, P. F. The importance of melt composition in controlling trace-element behaviour: an experimental study of Mn and Zn partitioning between forsterite and silicate melts. Chem. Geol. 117, 73–87 (1994).

    Article  Google Scholar 

  19. Banno, S. & Matsui, Y. On the formulation of partition coefficients for trace elements distribution between minerals and magma. Chem. Geol. 11, 1–15 (1973).

    Article  Google Scholar 

  20. Roeder, P. L. & Emslie, R. F. Olivine-liquid equilibrium. Contrib. Mineral. Petrol. 29, 275–289 (1970).

    Article  Google Scholar 

  21. O’Neill, H. S. C. & Berry, A. J. Activity coefficients at low dilution of CrO, NiO and CoO in melts in the system CaO–MgO–Al2O3–SiO2 at 1,400 °C: using the thermodynamic behaviour of transition metal oxides in silicate melts to probe their structure. Chem. Geol. 231, 77–89 (2006).

    Article  Google Scholar 

  22. Baker, M. B. & Stolper, E. M. Determining the composition of high-pressure mantle melts using diamond aggregates. Geochim. Cosmochim. Acta 58, 2811–2827 (1994).

    Article  Google Scholar 

  23. Baker, M. B., Hirschmann, M. M., Ghiorso, M. S. & Stolper, E. M. Compositions of near-solidus peridotite melts from experiments and thermodynamic calculations. Nature 375, 308–311 (1995).

    Article  Google Scholar 

  24. Hirschmann, M. M., Baker, M. B. & Stolper, E. M. The effect of alkalis on the silica content of mantle-derived melts. Geochim. Cosmochim. Acta 62, 883–902 (1998).

    Article  Google Scholar 

  25. Walter, M. J. Melting of garnet peridotite and the origin of komatiite and depleted lithosphere. J. Petrol. 39, 29–60 (1998).

    Article  Google Scholar 

  26. McDonough, W. F. & Sun, S.-s. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  27. Presnall, D. C. et al. Liquidus phase relations on the join diopside-forsterite-anorthite from 1 atm to 20 kbar: their bearing on the generation of crystallization of basaltic magma. Contrib. Mineral. Petrol. 66, 203–220 (1978).

    Article  Google Scholar 

  28. Stolper, E. M. A phase diagram for mid-ocean ridge basalts: preliminary results and implications for petrogenesis. Contrib. Mineral. Petrol. 74, 13–27 (1980).

    Article  Google Scholar 

  29. Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M. & Dick, H. J. B. A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Phil. Trans. R. Soc. Lond. A 355, 283–318 (1997).

    Article  Google Scholar 

  30. Plank, T., Spiegelman, M., Langmuir, C. H. & Forsyth, D. W. The meaning of ‘mean F’: clarifying the mean extent of melting at ocean ridges. J. Geophys. Res. 100, 15045–15052 (1995).

    Article  Google Scholar 

  31. Asimow, P. D. & Longhi, J. The significance of multiple saturation points in the context of polybaric near-fractional melting. J. Petrol. 45, 2349–2367 (2004).

    Article  Google Scholar 

  32. Wallace, P. J., Kamenetsky, V. S. & Cervantes, P. Melt inclusion CO2 contents, pressures of olivine crystallization, and the problem of shrinkage bubbles. Am. Mineral. 100, 787–794 (2015).

    Article  Google Scholar 

  33. Tuohy, R. M., Wallace, P. J., Loewen, M. W., Swanson, D. A. & Kent, A. J. R. Magma transport and olivine crystallization depths in Kı̄lauea’s east rift zone inferred from experimentally rehomogenized melt inclusions. Geochim. Cosmochim. Acta 185, 232–250 (2016).

    Article  Google Scholar 

  34. Beattie, P. Olivine-melt and orthopyroxene-melt equilibria. Contrib. Mineral. Petrol. 115, 103–111 (1993).

    Article  Google Scholar 

  35. Vidito, C., Herzberg, C., Gazel, E., Geist, D. & Harpp, K. Lithological structure of the Galápagos Plume. Geochem. Geophys. Geosyst. 14, 4214–4240 (2013).

    Article  Google Scholar 

  36. Dasgupta, R., Jackson, M. G. & Lee, C.-T. A. Major element chemistry of ocean island basalts—conditions of mantle melting and heterogeneity of mantle source. Earth Planet. Sci. Lett. 289, 377–392 (2010).

    Article  Google Scholar 

  37. Pietruszka, A. J., Norman, M. D., Garcia, M. O., Marske, J. P. & Burns, D. H. Chemical heterogeneity in the Hawaiian mantle plume from the alteration and dehydration of recycled oceanic crust. Earth Planet. Sci. Lett. 361, 298–309 (2013).

    Article  Google Scholar 

  38. Stracke, A. Earth’s heterogeneous mantle: a product of convection-driven interaction between crust and mantle. Chem. Geol. 330–331, 274–299 (2012).

    Article  Google Scholar 

  39. White, W. M. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chem. Geol. 419, 10–28 (2015).

    Article  Google Scholar 

  40. Stracke, A., Salters, V. J. M. & Sims, K. W. W. Assessing the presence of garnet-pyroxenite in the mantle sources of basalts through combined hafnium–neodymium–thorium isotope systematics. Geochem. Geophys. Geosyst. 1, 1006 (1999).

    Google Scholar 

  41. Elkins, L. J., Gaetani, G. A. & Sims, K. W. W. Partitioning of U and Th during garnet pyroxenite partial melting: constraints on the source of alkaline ocean island basalts. Earth Planet. Sci. Lett. 265, 270–286 (2008).

    Article  Google Scholar 

  42. Jackson, M. G., Weis, D. & Huang, S. Major element variations in Hawaiian shield lavas: source features and perspectives from global ocean island basalt (OIB) systematics. Geochem. Geophys. Geosyst. 13, Q09009 (2012).

    Google Scholar 

  43. Herzberg, C. et al. Phantom Archean crust in Mangaia hotspot lavas and the meaning of heterogeneous mantle. Earth Planet. Sci. Lett. 396, 97–106 (2014).

    Article  Google Scholar 

  44. Schreiber, H. D. et al. An electromotive force series in a borosilicate glass-forming melt. J. Am. Ceram. Soc. 67, C-106–C-108 (1984).

    Article  Google Scholar 

  45. Armstrong, J. T. in Microbeam Analysis (ed. Newbury, D. E.) 239–246 (San Francisco Press, 1988).

    Google Scholar 

  46. Jochum, K. P. et al. MPI-DING reference glasses for in situ microanalysis: new reference values for element concentrations and isotopic ratios. Geochem. Geophys. Geosyst. 7, Q02008 (2006).

    Article  Google Scholar 

  47. Hirschmann, M. M. et al. Library of Experimental Phase Relations (LEPR): a database and Web portal for experimental magmatic phase equilibria data. Geochem. Geophys. Geosyst. 9, Q03011 (2008).

    Article  Google Scholar 

  48. Davis, F. A., Humayun, M., Hirschmann, M. M. & Cooper, R. S. Experimentally determined mineral/melt partitioning of first-row transition elements (FRTE) during partial melting of peridotite at 3 GPa. Geochim. Cosmochim. Acta 104, 232–260 (2013).

    Article  Google Scholar 

  49. Witt-Eickschen, G., Palme, H., O’Neill, H. S. C. & Allen, C. M. The geochemistry of the volatile trace elements As, Cd, Ga, In and Sn in the Earth’s mantle: new evidence from in situ analyses of mantle xenoliths. Geochim. Cosmochim. Acta 73, 1755–1778 (2009).

    Article  Google Scholar 

  50. Creighton, S. A semi-empirical manganese-in-garnet single crystal thermometer. Lithos 112S, 177–182 (2009).

    Article  Google Scholar 

  51. O’Neill, H. S. C. & Wood, B. J. An experimental study of Fe–Mg partitioning between garnet and olivine and its calibration as a geothermometer. Contrib. Mineral. Petrol. 70, 59–70 (1979).

    Article  Google Scholar 

  52. Brey, G. P. & Köhler, T. Geothermobarometry in four-phase lherzolites II. New thermobarometers, and practical assessment of existing thermobarometers. J. Petrol. 31, 1353–1378 (1990).

    Article  Google Scholar 

  53. Harley, S. L. An experimental study of the partitioning of Fe and Mg between garnet and orthopyroxene. Contrib. Mineral. Petrol. 86, 359–373 (1984).

    Article  Google Scholar 

  54. Krogh, E. J. The garnet-clinopyroxene Fe–Mg geothermometer—a reinterpretation of existing experimental data. Contrib. Mineral. Petrol. 99, 44–48 (1988).

    Article  Google Scholar 

  55. Hart, S. R. & Davis, K. E. Nickel partitioning between olivine and silicate melt. Earth Planet. Sci. Lett. 40, 203–219 (1978).

    Article  Google Scholar 

  56. Kinzler, R. J., Grove, T. L. & Recca, S. I. An experimental study on the effect of temperature and melt composition on the partitioning of nickel between olivine and silicate melt. Geochim. Cosmochim. Acta 54, 1255–1265 (1990).

    Article  Google Scholar 

  57. Watson, E. B. Partitioning of manganese between forsterite and silicate liquid. Geochim. Cosmochim. Acta 41, 1363–1374 (1977).

    Article  Google Scholar 

  58. Le Roux, V., Dasgupta, R. & Lee, C.-T. A. Mineralogical heterogeneities in the Earth’s mantle: constraints from Mn, Co, Ni and Zn partitioning during partial melting. Earth Planet. Sci. Lett. 307, 395–408 (2011).

    Article  Google Scholar 

  59. Wood, B. J. & Fraser, D. G. Elementary Thermodynamics for Geologists (Oxford Univ. Press, 1976).

    Google Scholar 

  60. Nafziger, R. H. & Muan, A. Equilibrium phase compositions and thermodynamic properties of olivines and pyroxenes in the system MgO–‘FeO’–SiO2 . Am. Mineral. 52, 1364–1385 (1967).

    Google Scholar 

  61. Campbell, F. E. & Roeder, P. The stability of olivine and pyroxene in the Ni–Mg–Si–O system. Am. Mineral. 53, 257–268 (1968).

    Google Scholar 

  62. Beattie, P., Ford, C. & Russell, D. Partition coefficients for olivine-melt and orthopyroxene-melt systems. Contrib. Mineral. Petrol. 109, 212–224 (1991).

    Article  Google Scholar 

  63. Jones, J. H. Temperature- and pressure-independent correlations of olivine/liquid partition coefficients and their application to trace-element partitioning. Contrib. Mineral. Petrol. 88, 126–132 (1984).

    Article  Google Scholar 

  64. Leeman, W. P. & Lindstrom, D. J. Partitioning of Ni2+ between basaltic and synthetic melts and olivines—an experimental study. Geochim. Cosmochim. Acta 42, 801–816 (1978).

    Article  Google Scholar 

  65. Blundy, J. & Wood, B. Prediction of crystal-melt partition coefficients from elastic moduli. Nature 372, 452–454 (1994).

    Article  Google Scholar 

  66. Wood, B. J. & Blundy, J. D. A predictive model for rare earth element partitioning between clinopyroxene and anhydrous silicate melt. Contrib. Mineral. Petrol. 129, 166–181 (1997).

    Article  Google Scholar 

  67. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976).

    Article  Google Scholar 

  68. Witt-Eickschen, G. & O’Neill, H. S. C. The effect of temperature on the equilibrium distribution of trace elements between clinopyroxene, orthopyroxene, olivine and spinel in upper mantle peridotite. Chem. Geol. 221, 65–101 (2005).

    Article  Google Scholar 

  69. Workman, R. K. & Hart, S. R. Major and trace element composition of the depleted MORB mantle (DMM). Earth Planet. Sci. Lett. 231, 53–72 (2005).

    Article  Google Scholar 

  70. Yaxley, G. M. & O’Neill, H. S. C. Ni in garnet thermometry—a new experimental calibration at 3.0–4.5 GPa of Ni–Mg exchange between garnet and olivine at upper mantle pressures. In 9th Int. Kimberlite Conf. Extended abstr. 9IKC-A-00200 (2008).

Download references

Acknowledgements

C. Ma and S. Creighton are thanked for their guidance and support using the electron microprobe, and for sharing xenolith data, respectively. Funding was provided by National Science Foundation grant EAR-1019886, National Aeronautics and Space Administration grant NNG04GG14G, and European Research Council grant 267764.

Author information

Authors and Affiliations

Authors

Contributions

A.K.M. analysed the experiments, constructed the geochemical models and wrote the manuscript. B.J.W., M.B.B. and E.M.S. provided intellectual guidance throughout the project and wrote the manuscript.

Corresponding author

Correspondence to Andrew K. Matzen.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3532 kb)

Supplementary Information

Supplementary Information (XLSX 105 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matzen, A., Wood, B., Baker, M. et al. The roles of pyroxenite and peridotite in the mantle sources of oceanic basalts. Nature Geosci 10, 530–535 (2017). https://doi.org/10.1038/ngeo2968

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2968

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing