Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years

Abstract

The North Atlantic experiences climate variability on multidecadal scales, which is sometimes referred to as Atlantic multidecadal variability. However, the relative contributions of external forcing such as changes in solar irradiance or volcanic activity and internal dynamics to these variations are unclear. Here we provide evidence for persistent summer Atlantic multidecadal variability from AD 800 to 2010 using a network of annually resolved terrestrial proxy records from the circum-North Atlantic region. We find that large volcanic eruptions and solar irradiance minima induce cool phases of Atlantic multidecadal variability and collectively explain about 30% of the variance in the reconstruction on timescales greater than 30 years. We are then able to isolate the internally generated component of Atlantic multidecadal variability, which we define as the Atlantic multidecadal oscillation. We find that the Atlantic multidecadal oscillation is the largest contributor to Atlantic multidecadal variability over the past 1,200 years. We also identify coherence between the Atlantic multidecadal oscillation and Northern Hemisphere temperature variations, leading us to conclude that the apparent link between Atlantic multidecadal variability and regional to hemispheric climate does not arise solely from a common response to external drivers, and may instead reflect dynamic processes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Summer AMV reconstruction.
Figure 2: Wavelet analysis for the reconstructed AMV during the past twelve centuries.
Figure 3: The reconstructed AMV response to volcanic eruptions and solar variability.
Figure 4: Comparison of the AMV and AMO reconstructions with Northern Hemisphere (NH) temperature.

References

  1. Enfield, D. B., Mestas-Nuñez, A. M. & Trimble, P. J. The Atlantic Multidecadal Oscillation and its relation to rainfall and river flows in the continental US. Geophys. Res. Lett. 28, 2077–2080 (2001).

    Article  Google Scholar 

  2. Sutton, R. T. & Hodson, D. L. Atlantic Ocean forcing of North American and European summer climate. Science 309, 115–118 (2005).

    Article  Google Scholar 

  3. Straneo, F. & Heimbach, P. North Atlantic warming and the retreat of Greenland’s outlet glaciers. Nature 504, 36–43 (2013).

    Article  Google Scholar 

  4. Sutton, R. T. & Dong, B. Atlantic Ocean influence on a shift in European climate in the 1990s. Nat. Geosci. 5, 788–792 (2012).

    Article  Google Scholar 

  5. Goldenberg, S. B., Landsea, C. W., Mestas-Nuñez, A. M. & Gray, W. M. The recent increase in Atlantic Hurricane activity: causes and implications. Science 293, 474–479 (2001).

    Article  Google Scholar 

  6. Zhang, R. & Delworth, T. L. Impact of Atlantic multidecadal oscillations on India/Sahel rainfall and Atlantic hurricanes. Geophys. Res. Lett. 33, L17712 (2006).

    Article  Google Scholar 

  7. Li, S., Perlwitz, J., Quan, X. & Hoerling, M. P. Modelling the influence of North Atlantic multidecadal warmth on the Indian summer rainfall. Geophys. Res. Lett. 35, L05804 (2008).

    Google Scholar 

  8. Wang, J., Yang, B., Ljungqvist, F. C. & Zhao, Y. The relationship between the Atlantic multidecadal oscillation and temperature variability in China during the last millennium. J. Quat. Sci. 28, 653–658 (2013).

    Article  Google Scholar 

  9. Tung, K. K. & Zhou, J. Using data to attribute episodes of warming and cooling in instrumental records. Proc. Natl Acad. Sci. USA 110, 2058–2063 (2013).

    Article  Google Scholar 

  10. Chylek, P., Klett, J. D., Lesins, G., Dubey, M. K. & Hengartner, N. The Atlantic multidecadal oscillation as a dominant factor of oceanic influence on climate. Geophys. Res. Lett. 41, 1689–1697 (2014).

    Article  Google Scholar 

  11. Steinman, B. A., Mann, M. E. & Miller, S. K. Atlantic and Pacific multidecadal oscillations and Northern Hemisphere temperatures. Science 347, 988–991 (2015).

    Article  Google Scholar 

  12. McCarthy, G. D., Haigh, I. D., Hirschi, J. J., Grist, J. P. & Smeed, D. A. Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. Nature 521, 508–510 (2015).

    Article  Google Scholar 

  13. Delworth, T. L. & Mann, M. E. Observed and simulated multidecadal variability in the Northern Hemisphere. Clim. Dynam. 16, 661–676 (2000).

    Article  Google Scholar 

  14. Knight, J. R., Allan, R. J., Folland, C. K., Vellinga, M. & Mann, M. E. A signature of persistent natural thermohaline circulation cycles in observed climate. Geophys. Res. Lett. 32, L20708 (2005).

    Article  Google Scholar 

  15. Otterå, O. H., Bentsen, M., Drange, H. & Suo, L. External forcing as a metronome for Atlantic multidecadal variability. Nat. Geosci. 3, 688–694 (2010).

    Article  Google Scholar 

  16. Knudsen, M. F., Jacobsen, B. H., Seidenkrantz, M. S. & Olsen, J. Evidence for external forcing of the Atlantic multidecadal oscillation since termination of the Little Ice Age. Nat. Commun. 5, 3323 (2014).

    Article  Google Scholar 

  17. Booth, B. B., Dunstone, N. J., Halloran, P. R., Andrews, T. & Bellouin, N. Aerosols implicated as a prime driver of twentieth-century North Atlantic climate variability. Nature 484, 228–232 (2012).

    Article  Google Scholar 

  18. Dai, A., Fyfe, J. C., Xie, S.-P. & Dai, X. Decadal modulation of global surface temperature by internal climate variability. Nat. Clim. Change 5, 555–559 (2015).

    Article  Google Scholar 

  19. Frankcombe, L. M., England, M. H., Mann, M. E. & Steinman, B. A. Separating internal variability from the externally forced climate response. J. Clim. 28, 8184–8202 (2015).

    Article  Google Scholar 

  20. Cheung, A. H. et al. Comparison of low frequency internal climate variability in CMIP5 models and observations. J. Clim. http://dx.doi.org.10.1175/jcli-d-1116-0712.1171 (in the press).

  21. Cook, E. R., D’Arrigo, R. D. & Mann, M. E. A well-verified, multiproxy reconstruction of the winter North Atlantic Oscillation index since AD 1400. J. Clim. 15, 1754–1764 (2002).

    Article  Google Scholar 

  22. Coats, S. et al. Internal ocean-atmosphere variability drives megadroughts in Western North America. Geophys. Res. Lett. 43, 9886–9894 (2016).

    Article  Google Scholar 

  23. Torrence, C. & Compo, G. P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 79, 61–78 (1998).

    Article  Google Scholar 

  24. Mann, M. E. et al. Global signatures and dynamical origins of the Little Ice Age and medieval climate anomaly. Science 326, 1256–1260 (2009).

    Article  Google Scholar 

  25. Gray, S. T., Graumlich, L. J., Betancourt, J. L. & Pederson, G. T. A tree-ring based reconstruction of the Atlantic multidecadal oscillation since 1567 AD. Geophys. Res. Lett. 31, L12205 (2004).

    Article  Google Scholar 

  26. Sigl, M. et al. Timing and climate forcing of volcanic eruptions for the past 2,500 years. Nature 523, 543–549 (2015).

    Article  Google Scholar 

  27. Crowley, T. J. & Unterman, M. B. Technical details concerning development of a 1,200 yr proxy index for global volcanism. Earth Syst. Sci. Data 5, 187–197 (2013).

    Article  Google Scholar 

  28. Swingedouw, D. et al. Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions. Nat. Commun. 6, 6545 (2015).

    Article  Google Scholar 

  29. Zanchettin, D. et al. Background conditions influence the decadal climate response to strong volcanic eruptions. J. Geophys. Res. 118, 4090–4106 (2013).

    Google Scholar 

  30. Esper, J., Schneider, L., Smerdon, J. E., Schöne, B. R. & Büntgen, U. Signals and memory in tree-ring width and density data. Dendrochronologia 35, 62–70 (2015).

    Article  Google Scholar 

  31. Ammann, C. M., Joos, F., Schimel, D. S., Otto-Bliesner, B. L. & Tomas, R. A. Solar influence on climate during the past millennium: results from transient simulations with the NCAR Climate System Model. Proc. Natl Acad. Sci. USA 104, 3713–3718 (2007).

    Article  Google Scholar 

  32. Steinhilber, F., Beer, J. & Fröhlich, C. Total solar irradiance during the Holocene. Geophys. Res. Lett. 36, L19704 (2009).

    Article  Google Scholar 

  33. Christiansen, B. & Ljungqvist, F. C. Challenges and perspectives for large-scale temperature reconstructions of the past two millennia. Rev. Geophys. 55, 40–96 (2017).

    Article  Google Scholar 

  34. Saenger, C., Cohen, A. L., Oppo, D. W., Halley, R. B. & Carilli, J. E. Surface-temperature trends and variability in the low-latitude North Atlantic since 1552. Nat. Geosci. 2, 492–495 (2009).

    Article  Google Scholar 

  35. Masson-Delmotte, V. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 5, 383–464 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  36. Luterbacher, J. et al. European summer temperatures since Roman times. Environ. Res. Lett. 11, 024001 (2016).

    Article  Google Scholar 

  37. Clement, A. et al. The Atlantic multidecadal oscillation without a role for ocean circulation. Science 350, 320–324 (2015).

    Article  Google Scholar 

  38. Li, J., Sun, C. & Jin, F. NAO implicated as a predictor of Northern Hemisphere mean temperature multidecadal variability. Geophys. Res. Lett. 40, 5497–5502 (2013).

    Article  Google Scholar 

  39. Delworth, T. L. et al. The North Atlantic oscillation as a driver of rapid climate change in the Northern Hemisphere. Nat. Geosci. 9, 509–512 (2016).

    Article  Google Scholar 

  40. Rahmstorf, S. et al. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Change 5, 475–480 (2015).

    Article  Google Scholar 

  41. Stoffel, M. et al. Estimates of volcanic-induced cooling in the Northern Hemisphere over the past 1,500 years. Nat. Geosci. 8, 784–788 (2015).

    Article  Google Scholar 

  42. Mann, M. E. et al. Predictability of the recent slowdown and subsequent recovery of large-scale surface warming using statistical methods. Geophys. Res. Lett. 43, 3459–3467 (2016).

    Article  Google Scholar 

  43. Hegerl, G. & Zwiers, F. Use of models in detection and attribution of climate change. WIREs Clim. Change 2, 570–591 (2011).

    Article  Google Scholar 

  44. Kaplan, A. et al. Analyses of global sea surface temperature 1856–1991. J. Geophys. Res. 103, 18567–18589 (1998).

    Article  Google Scholar 

  45. PAGES 2k Consortium. Continental-scale temperature variability during the past two millennia. Nat. Geosci. 6, 339–346 (2013).

  46. Melvin, T. M., Grudd, H. & Briffa, K. R. Potential bias in ‘updating’ tree-ring chronologies using regional curve standardisation: re-processing 1,500 years of Torneträsk density and ring-width data. Holocene 23, 364–373 (2013).

    Article  Google Scholar 

  47. Zhang, P., Linderholm, H. W., Gunnarson, B. E., Björklund, J. & Chen, D. 1,200 years of warm-season temperature variability in central Fennoscandia inferred from tree-ring density. Clim. Past 12, 1297–1312 (2016).

    Article  Google Scholar 

  48. Trouet, V. et al. A 1,500-year reconstruction of annual mean temperature for temperate North America on decadal-to-multidecadal time scales. Environ. Res. Lett. 8, 024008 (2013).

    Article  Google Scholar 

  49. Ljungqvist, F. C. et al. Northern Hemisphere hydroclimate variability over the past twelve centuries. Nature 532, 94–98 (2016).

    Article  Google Scholar 

  50. Schneider, L. et al. Revising mid-latitude summer-temperatures back to AD 600 based on a wood density network. Geophys. Res. Lett. 42, 4556–4562 (2015).

    Article  Google Scholar 

  51. Wilson, R. et al. Last millennium northern hemisphere summer temperatures from tree rings: part I: the long term context. Quat. Sci. Rev. 134, 1–18 (2016).

    Article  Google Scholar 

Download references

Acknowledgements

B.Y. and J.W. are supported by the National Science Foundation of China (NSFC) (Grant No. 41325008, 41661144008, 41520104005 and 41602192) and the CAS ‘Light of West China’ Program. T.J.O. and K.R.B. are supported by the UK Natural Environment Research Council (NERC, grant NE/N006348/1 and NE/P006809/1). K.R.B. also thanks G. Kapur for ongoing medical support. J.L. and E.Z. acknowledge the German Science Foundation (DFG) project (Attribution of forced and internal Chinese climate variability in the common eras). B.Y., T.J.O. and J.L. are also supported by the Belmont Forum and JPI-Climate, Collaborative Research Action ‘INTEGRATE, An integrated data-model study of interactions between tropical monsoons and extratropical climate variability and extremes’. F.C.L. is partly supported by a grant from the Royal Swedish Academy of Letters, History and Antiquities and the Bank of Sweden Tercentenary Foundation (Stiftelsen Riksbankens Jubileumsfond).

Author information

Authors and Affiliations

Authors

Contributions

J.W. and B.Y. conceived the study, carried out the data analysis and wrote the manuscript, with contributions to the design of the study and its experiments from F.C.L., J.L., T.J.O. and K.R.B. E.Z. designed and performed the pseudoproxy experiments. All authors discussed the results, and edited and commented on the manuscript.

Corresponding author

Correspondence to Bao Yang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5777 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Yang, B., Ljungqvist, F. et al. Internal and external forcing of multidecadal Atlantic climate variability over the past 1,200 years. Nature Geosci 10, 512–517 (2017). https://doi.org/10.1038/ngeo2962

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2962

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing