Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Detection of a persistent meteoric metal layer in the Martian atmosphere

Abstract

Interplanetary dust particles sporadically enter planetary atmospheres at orbital velocities and ablate as collisions occur with ambient gases to produce a persistent layer of metallic atoms (for example, Fe, Mg, Na) in their upper atmospheres. Such layers are well studied at Earth, but have not been directly detected elsewhere in the Solar System. Here we report the detection of a meteoric layer consisting of Mg+ ions near an altitude of 90 km in the Martian atmosphere from ultraviolet remote sensing observations by NASA’s MAVEN spacecraft. We observe temporal variability in the Mg+ layer over the course of a Martian year, moving up and down in altitude seasonally and in response to dust storms, and displaying diurnal fluctuations in density. We also find that most meteor showers do not significantly perturb this layer, which constrains the fluence of eleven observed Martian meteor showers to less than our estimated global dust flux. The persistence and variability of the Mg+ layer are difficult to explain with existing models and reconcile with other transient layers of ions observed in the Martian ionosphere. We suggest that the transient layers are not sourced from the persistent Mg+ layer and thus not derived from meteoric material, but are ambient ions produced by some unknown mechanism.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spectral identification of Mg+.
Figure 3: One Mars year of observations of Mg+.
Figure 2: Altitude profile of Mg+ compared with model predictions.

Similar content being viewed by others

References

  1. Istomin, V. Ions of extraterrestrial origin in the Earth atmosphere. Planet. Space Sci. 11, 173–174 (1963).

    Article  Google Scholar 

  2. Anderson, J. & Barth, C. Rocket investigation of the Mg I and Mg II dayglow. J. Geophys. Res. 76, 3723–3732 (1971).

    Article  Google Scholar 

  3. Plane, J. Cosmic dust in the earth’s atmosphere. Chem. Soc. Rev. 41, 6507–6518 (2012).

    Article  Google Scholar 

  4. Vondrak, T. et al. A chemical model of meteoric ablation. Atmos. Chem. Phys. 8, 7015–7031 (2008).

    Article  Google Scholar 

  5. Plane, J., Feng, W. & Dawkins, E. The mesosphere and metals: chemistry and changes. Chem. Rev. 115, 4497–4541 (2015).

    Article  Google Scholar 

  6. Nachbar, M., Duft, D. & Mangan, T. Laboratory measurements of heterogeneous CO2 ice nucleation on nanoparticles under conditions relevant to the Martian mesosphere. J. Geophys. Res. 121, 753–769 (2016).

    Article  Google Scholar 

  7. Jakosky, B. et al. The Mars atmosphere and volatile evolution (MAVEN) mission. Space Sci. Rev. 195, 3–48 (2015).

    Article  Google Scholar 

  8. Benna, M. et al. Metallic ions in the upper atmosphere of Mars from the passage of comet C/2013 A1 (Siding Spring). Geophys. Res. Lett. 42, 4670–4675 (2015).

    Article  Google Scholar 

  9. Gurnett, D. et al. An ionized layer in the upper atmosphere of Mars caused by dust impacts from comet Siding Spring. Geophys. Res. Lett. 42, 4745–4751 (2015).

    Article  Google Scholar 

  10. Restano, M. et al. Effects of the passage of Comet C/2013 A1 (Siding Spring) observed by the Shallow Radar (SHARAD) on Mars Reconnaissance Orbiter. Geophys. Res. Lett. 42, 4663–4669 (2015).

    Article  Google Scholar 

  11. Schneider, N. et al. MAVEN IUVS observations of the aftermath of the Comet Siding Spring meteor shower on Mars. Geophys. Res. Lett. 42, 4755–4761 (2015).

    Article  Google Scholar 

  12. Kramida, A., Ralchenko, Y. & Reader, J. NIST ASD Team NIST Atomic Spectra Database (ver. 5.3) (Online, 2015).

  13. McClintock, W. et al. The imaging ultraviolet spectrograph (IUVS) for the MAVEN mission. Space Sci. Rev. 195, 75–124 (2015).

    Article  Google Scholar 

  14. Evans, J. et al. Retrieval of CO2 and N2 in the Martian thermosphere using dayglow observations by IUVS on MAVEN. Geophys. Res. Lett. 42, 9040–9049 (2015).

    Article  Google Scholar 

  15. Stevens, M. et al. New observations of molecular nitrogen in the Martian upper atmosphere by IUVS on MAVEN. Geophys. Res. Lett. 42, 9050–9056 (2015).

    Article  Google Scholar 

  16. Jain, S. et al. The structure and variability of Mars upper atmosphere as seen in MAVEN/IUVS dayglow observations. Geophys. Res. Lett. 42, 9023–9030 (2015).

    Article  Google Scholar 

  17. Crismani, M. et al. Ultraviolet observations of the hydrogen coma of comet C/2013 A1 (Siding Spring) by MAVEN/IUVS. Geophys. Res. Lett. 42, 8803–8809 (2015).

    Article  Google Scholar 

  18. Dymond, K. et al. Middle ultraviolet emission from ionized iron. Geophys. Res. Lett. 30, 1003 (2003).

    Article  Google Scholar 

  19. Chamberlain, J. & Hunten, D. Theory of Planetary Atmospheres. An Introduction to their Physics and Chemistry (Academic, 1987).

    Google Scholar 

  20. Jakosky, B. et al. Mars’ atmospheric history derived from upper-atmosphere measurements of 38Ar/36Ar. Science 355, 1409–1410 (2017).

    Article  Google Scholar 

  21. Whalley, C. & Plane, J. Meteoric ion layers in the Martian atmosphere. Faraday Discuss. 147, 349–368 (2010).

    Article  Google Scholar 

  22. Molina-Cuberos, G. et al. Meteoric ions in the atmosphere of Mars. Planet. Space Sci. 51, 239–249 (2003).

    Article  Google Scholar 

  23. Carrillo-Sánchez, J. et al. Sources of cosmic dust in the Earth’s atmosphere. Geophys. Res. Lett. 43, 11979–11986 (2016).

    Article  Google Scholar 

  24. Nesvorný, D. et al. Cometary origin of the zodiacal cloud and carbonaceous micrometeorites. Implications for hot debris disks. Astrophys. J. 713, 816 (2010).

    Article  Google Scholar 

  25. Andersson, L. et al. Dust observations at orbital altitudes surrounding Mars. Science 350, 6261 (2015).

    Article  Google Scholar 

  26. Grebowsky, J. et al. Unique, non-earthlike, meteoritic ion behavior in the upper atmosphere of Mars. Geophys. Res. Lett. 44, http://dx.doi.org/10.1002/2017GL072635 (2017).

  27. Grebowsky, J. & Aikin, A. In Situ Measurements of Meteoric Ions (Cambridge Univ. Press, 2002).

    Google Scholar 

  28. Pätzold, M. et al. A sporadic third layer in the ionosphere of Mars. Science 310, 837–839 (2005).

    Article  Google Scholar 

  29. Risberg, P. The spectrum of singly-ionized magnesium, MG-II. Arkiv Fysik 9, 483–494 (1955).

    Google Scholar 

  30. A’Hearn, M. F., Ohlmacher, J. T. & Schleicher, D. G. A High Resolution Solar Atlas for Fluorescence, Calculations Technical Report: TR AP83-044 (University of Maryland, 1983).

  31. Rosenqvist, J. & Chassefiere, E. A re-examination of the relationship between eddy mixing and O2 in the Martian middle atmosphere. J. Geophys. Res. 100, 5541–5551 (1995).

    Article  Google Scholar 

  32. Izakov, M. N. Martian upper atmosphere structure from the Viking spacecraft experiments. Icarus 36, 189–197 (1978).

    Article  Google Scholar 

  33. Pesnell, W. D. & Grebowsky, J. Meteoric magnesium ions in the Martian atmosphere. J. Geophys. Res. 105, 1695–1707 (2000).

    Article  Google Scholar 

  34. Rodrigo, R., Garcia-Alvarez, E., Lopez-Gonzalez, M. J. & Lopez-Moreno, J. J. A nonsteady one-dimensional theoretical model of Mars’ neutral atmospheric composition between 30 and 200 km. J. Geophys. Res. 95, 14795–14810 (1990).

    Article  Google Scholar 

  35. Whalley, C. L., Gomez Martin, J. C., Wright, T. G. & Plane, J. M. C. A kinetic study of Mg+ and Mg-containing ions reacting with O3, O2, N2, CO2, N2O and H2O: implications for magnesium ion chemistry in the upper atmosphere. Phys. Chem. Chem. Phys 13, 6352–6364 (2011).

    Article  Google Scholar 

  36. Plane, J. M. C. & Whalley, C. L. A new model for magnesium chemistry in the upper atmosphere. J. Phys. Chem. A 116, 6240–6252 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

NASA supports the MAVEN mission through the Mars Scout programme. M.M.J.C. would like to thank A. Christou and J. Vaubaillon for their input on the meteor shower candidate list and M. Slipski, P. Withers and K. Peter for their insightful comments. J.M.C.P. is supported by the European Research Council (project 291332—CODITA).

Author information

Authors and Affiliations

Authors

Contributions

M.M.J.C., S.K.J., J.S.E., J.I.D. and M.S.C. improved the data processing to create these data products. M.M.J.C., N.M.S. and J.M.C.P. developed the interpretation of this data. J.M.C.P. and J.D.C.-S. created the model used herein. All authors contributed to the development of the instrument pipeline and/or data acquisition as well as interpretation and presentation of these results.

Corresponding author

Correspondence to M. M. J. Crismani.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 438 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Crismani, M., Schneider, N., Plane, J. et al. Detection of a persistent meteoric metal layer in the Martian atmosphere. Nature Geosci 10, 401–404 (2017). https://doi.org/10.1038/ngeo2958

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2958

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing