Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon

Abstract

The net flux of carbon between the Earth’s interior and exterior, which is critical for redox evolution and planetary habitability, relies heavily on the extent of carbon subduction. While the fate of carbonates during subduction has been studied, little is known about how organic carbon is transferred from the Earth’s surface to the interior, although organic carbon sequestration is related to sources of oxygen in the surface environment. Here we use high pressure–temperature experiments to determine the capacity of rhyolitic melts to carry carbon under graphite-saturated conditions in a subducting slab, and thus to constrain the subduction efficiency of organic carbon, the remnants of life, through time. We use our experimental data and a thermodynamic model of CO2 dissolution in slab melts to quantify organic carbon mobility as a function of slab parameters. We show that the subduction of graphitized organic carbon, and the graphite and diamond formed by reduction of carbonates with depth, remained efficient even in ancient, hotter subduction zones where oxidized carbon subduction probably remained limited. We suggest that immobilization of organic carbon in subduction zones and deep sequestration in the mantle facilitated the rise (103–5 fold) and maintenance of atmospheric oxygen since the Palaeoproterozoic and is causally linked to the Great Oxidation Event. Our modelling shows that episodic recycling of organic carbon before the Great Oxidation Event may also explain occasional whiffs of atmospheric oxygen observed in the Archaean.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: CO2 contents and C–O–H volatile speciation in graphite-saturated rhyolitic glasses.
Figure 2: Slab top PT paths, solidi and decarbonation boundaries of crustal lithologies, and CO2 contents in slab-derived melts at graphite saturation.
Figure 3: Slab melt C content and graphitic carbon subduction efficiency.
Figure 4: Deep time subduction zone carbon cycle and its impact on O2 in the Earth’s atmosphere through time.

References

  1. 1

    Dasgupta, R. Ingassing, storage, and outgassing of terrestrial carbon through geologic time. Rev. Mineral. Geochem. 75, 183–229 (2013).

    Article  Google Scholar 

  2. 2

    Mann, U. & Schmidt, M. W. Melting of pelitic sediments at subarc depths: 1. Flux vs. fluid-absent melting and a parameterization of melt productivity. Chem. Geol. 404, 150–167 (2015).

    Article  Google Scholar 

  3. 3

    Galvez, M. E. et al. Graphite formation by carbonate reduction during subduction. Nat. Geosci. 6, 473–477 (2013).

    Article  Google Scholar 

  4. 4

    Duncan, M. S. & Dasgupta, R. CO2 solubility and speciation in rhyolitic sediment partial melts at 1.5–3.0 GPa—implications for carbon flux in subduction zones. Geochim. Cosmochim. Acta 124, 328–347 (2014).

    Article  Google Scholar 

  5. 5

    Hayes, J. M. & Waldbauer, J. R. The carbon cycle and associated redox processes through time. Phil. Trans. R. Soc. B 361, 931–950 (2006).

    Article  Google Scholar 

  6. 6

    Holland, H. D. Volcanic gases, black smokers, and the Great Oxidation Event. Geochim. Cosmochim. Acta 66, 3811–3826 (2002).

    Article  Google Scholar 

  7. 7

    Canfield, D. E. The early history of atmospheric oxygen: homage to Robert A. Garrels. Annu. Rev. Earth Planet. Sci. 33, 1–36 (2005).

    Article  Google Scholar 

  8. 8

    Kasting, J. F., Eggler, D. H. & Raeburn, S. P. Mantle redox evolution and the oxidation state of the Archean atmosphere. J. Geol. 101, 245–257 (1993).

    Google Scholar 

  9. 9

    Lyons, T. W., Reinhard, C. T. & Planavsky, N. J. The rise of oxygen in Earth’s early ocean and atmosphere. Nature 506, 307–315 (2014).

    Article  Google Scholar 

  10. 10

    Holland, H. D. Why the atmosphere became oxygenated: a proposal. Geochim. Cosmochim. Acta 73, 5241–5255 (2009).

    Article  Google Scholar 

  11. 11

    Catling, D. C. in Treatise on Geochemistry Vol. 6 (ed. Farquhar, J.) Ch. 7, 177–195 (Elsevier-Pergamon, 2014).

    Google Scholar 

  12. 12

    Lee, C. T. et al. Two-step rise of atmospheric oxygen linked to the growth of continents. Nat. Geosci. 9, 417–424 (2016).

    Article  Google Scholar 

  13. 13

    Krissansen-Totton, J., Buick, R. & Catling, D. C. A statistical analysis of the carbon isotope record from the Archean to Phanerozoic and implications for the rise of oxygen. Am. J. Sci. 315, 275–316 (2015).

    Article  Google Scholar 

  14. 14

    Ganino, C. & Arndt, N. T. Climate changes caused by degassing of sediments during the emplacement of large igneous provinces. Geology 37, 323–326 (2009).

    Article  Google Scholar 

  15. 15

    Trail, D., Watson, E. B. & Tailby, N. D. The oxidation state of Hadean magmas and implications for early Earth’s atmosphere. Nature 480, 79-U238 (2011).

    Article  Google Scholar 

  16. 16

    Delano, J. W. Redox history of the Earth’s interior since 3,900 Ma: implications for prebiotic molecules. Orig. Life Evol. Biol. 31, 311–341 (2001).

    Article  Google Scholar 

  17. 17

    Smythe, D. J. & Brenan, J. M. Magmatic oxygen fugacity estimated using zircon-melt partitioning of cerium. Earth Planet. Sci. Lett. 453, 260–266 (2016).

    Article  Google Scholar 

  18. 18

    Gaillard, F., Scaillet, B. & Arndt, N. T. Atmospheric oxygenation caused by a change in volcanic degassing pressure. Nature 478, 229–232 (2011).

    Article  Google Scholar 

  19. 19

    Shirey, S. B. & Richardson, S. H. Start of the Wilson Cycle at 3 Ga shown by diamonds from subcontinental mantle. Science 333, 434–436 (2011).

    Article  Google Scholar 

  20. 20

    Smart, K. A., Tappe, S., Stern, R. A., Webb, S. J. & Ashwal, L. D. Early Archean tectonics and mantle redox recorded in Witwatersrand diamonds. Nat. Geosci. 9, 255–259 (2016).

    Article  Google Scholar 

  21. 21

    Shirey, S. B. et al. Diamonds and the geology of mantle carbon. Rev. Mineral. Geochem. 75, 355–421 (2013).

    Article  Google Scholar 

  22. 22

    Palot, M., Pearson, D. G., Stern, R. A., Stachel, T. & Harris, J. W. Multiple growth events, processes and fluid sources involved in diamond genesis: a micro-analytical study of sulphide-bearing diamonds from Finsch mine, RSA. Geochim. Cosmochim. Acta 106, 51–70 (2013).

    Article  Google Scholar 

  23. 23

    McKenzie, N. R. et al. Continental arc volcanism as the principal driver of icehouse-greenhouse variability. Science 352, 444–447 (2016).

    Article  Google Scholar 

  24. 24

    Voice, P. J., Kowalewski, M. & Eriksson, K. A. Quantifying the timing and rate of crustal evolution: global compilation of radiometrically dated detrital zircon grains. J. Geol. 119, 109–126 (2011).

    Google Scholar 

  25. 25

    Gorman, P. J., Kerrick, D. M. & Connolly, J. A. D. Modeling open system metamorphic decarbonation of subducting slabs. Geochem. Geophys. Geosyst. 7, Q04007 (2006).

    Article  Google Scholar 

  26. 26

    Galvez, M. E., Connolly, J. A. D. & Manning, C. E. Implications for metal and volatile cycles from the pH of subduction zones. Nature 539, 420–424 (2016).

    Article  Google Scholar 

  27. 27

    Poli, S. Carbon mobilized at shallow depths in subduction zones by carbonatitic liquids. Nat. Geosci. 8, 633–635 (2015).

    Article  Google Scholar 

  28. 28

    van Keken, P. E. The structure and dynamics of the mantle wedge. Earth Planet. Sci. Lett. 215, 323–338 (2003).

    Article  Google Scholar 

  29. 29

    Duncan, M. S. & Dasgupta, R. Pressure and temperature dependence of CO2 solubility in hydrous rhyolitic melt—implications for carbon transfer to mantle source of volcanic arcs via partial melt of subducting crustal lithologies. Contrib. Mineral. Petrol. 169, 54 (2015).

    Article  Google Scholar 

  30. 30

    Ohtomo, Y., Kakegawa, T., Ishida, A., Nagase, T. & Rosing, M. T. Evidence for biogenic graphite in early Archaean Isua metasedimentary rocks. Nat. Geosci. 7, 25–28 (2013).

    Article  Google Scholar 

  31. 31

    Buseck, P. R. & Beyssac, O. From organic matter to graphite: graphitization. Elements 10, 421–426 (2014).

    Article  Google Scholar 

  32. 32

    Beyssac, O., Rouzaud, J. N., Goffé, B., Brunet, F. & Chopin, C. Graphitization in a high-pressure, low-temperature metamorphic gradient: a Raman microspectroscopy and HRTEM sutdy. Contrib. Mineral. Petrol. 143, 19–31 (2002).

    Article  Google Scholar 

  33. 33

    Sverjensky, D. A., Stagno, V. & Huang, F. Important role for organic carbon in subduction-zone fluids in the deep carbon cycle. Nat. Geosci. 7, 909–913 (2014).

    Article  Google Scholar 

  34. 34

    Sizova, E., Gerya, T., Brown, M. & Perchuk, L. L. Subduction styles in the Precambrian: insight from numerical experiments. Lithos 116, 209–229 (2010).

    Article  Google Scholar 

  35. 35

    Rapp, R. P. & Watson, E. B. Dehydration melting of metabasalt at 8–32 kbar—implications for continental growth and crust-mantle recycling. J. Petrol. 36, 891–931 (1995).

    Article  Google Scholar 

  36. 36

    de Leeuw, G. A. M., Hilton, D. R., Fischer, T. P. & Walker, J. A. The He-CO2 isotope and relative abundance characteristics of geothermal fluids in El Salvador and Honduras: new constraints on volatile mass balance of the Central American Volcanic Arc. Earth Planet. Sci. Lett. 258, 132–146 (2007).

    Article  Google Scholar 

  37. 37

    Holloway, J. R., Pan, V. & Gudmundsson, G. High pressure fluid absent melting experiments in the presence of graphite—oxygen fugacity, ferric ferrous ratio and dissolved CO2 . Eur. J. Mineral. 4, 105–114 (1992).

    Article  Google Scholar 

  38. 38

    McLennan, S. M. & Taylor, S. R. in Archaean Geochemistry (ed. Kröner, A.) 47–72 (Springer, 1984).

    Google Scholar 

  39. 39

    Syracuse, E. M., van Keken, P. E. & Abers, G. A. The global range of subduction zone thermal models. Phys. Earth Planet. Inter. 183, 73–90 (2010).

    Article  Google Scholar 

  40. 40

    Herzberg, C., Condie, K. & Korenaga, J. Thermal history of the Earth and its petrological expression. Earth Planet. Sci. Lett. 292, 79–88 (2010).

    Article  Google Scholar 

  41. 41

    Lee, C. T. A. Upside-down differentiation and generation of a ‘primordial’ lower mantle. Nature 463, 930-U102 (2010).

    Article  Google Scholar 

  42. 42

    Kelemen, P. B. & Manning, C. E. Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up. Proc. Natl Acad. Sci. USA 112, E3997–E4006 (2015).

    Article  Google Scholar 

  43. 43

    Plank, T. in Treatise on Geochemistry Vol. 4 (ed. Rudnick, R. L.) Ch. 17, 607–629 (Elsevier-Pergamon, 2014).

    Google Scholar 

  44. 44

    Cartapanis, O., Bianchi, D., Jaccard, S. L. & Galbraith, E. D. Global pulses of organic carbon burial in deep-sea sediments during glacial maxima. Nat. Commun. 7, 10796 (2016).

    Article  Google Scholar 

  45. 45

    Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).

    Article  Google Scholar 

  46. 46

    Katsev, S. & Crowe, S. A. Organic carbon burial efficiencies in sediments: the power law of mineralization revisited. Geol. 43, 607–610 (2015).

    Article  Google Scholar 

  47. 47

    Des Marais, D. J. in Stable Isotope Geochemistry Vol. 43 (eds Valley, J. W. & Cole, D. R.) 555–578 (Mineralogical Society of America, 2001).

    Google Scholar 

  48. 48

    Dasgupta, R., Hirschmann, M. M. & Withers, A. C. Deep global cycling of carbon constrained by the solidus of anhydrous, carbonated eclogite under upper mantle conditions. Earth Planet. Sci. Lett. 227, 73–85 (2004).

    Article  Google Scholar 

  49. 49

    Kennedy, C. S. & Kennedy, G. C. Equilibrium boundary between graphite and diamond. J. Geophys. Res. 81, 2467–2470 (1976).

    Article  Google Scholar 

  50. 50

    Anbar, A. D. et al. A whiff of oxygen before the Great Oxidation Event? Science 317, 1903–1906 (2007).

    Article  Google Scholar 

  51. 51

    Tsuno, K. & Dasgupta, R. Melting phase relation of nominally anhydrous, carbonated pelitic-eclogite at 2.5–3.0 GPa and deep cycling of sedimentary carbon. Contrib. Mineral. Petrol. 161, 743–763 (2011).

    Article  Google Scholar 

  52. 52

    Spandler, C., Yaxley, G., Green, D. H. & Scott, D. Experimental phase and melting relations of metapelite in the upper mantle: implications for the petrogenesis of intraplate magmas. Contrib. Mineral. Petrol. 160, 569–589 (2010).

    Article  Google Scholar 

  53. 53

    Schmidt, M. W., Vielzeuf, D. & Auzanneau, E. Melting and dissolution of subducting crust at high pressures: the key role of white mica. Earth Planet. Sci. Lett. 228, 65–84 (2004).

    Article  Google Scholar 

  54. 54

    Hermann, J. & Green, D. H. Experimental constraints on high pressure melting in subducted crust. Earth Planet. Sci. Lett. 188, 149–168 (2001).

    Article  Google Scholar 

  55. 55

    Hermann, J. & Spandler, C. J. Sediment melts at sub-arc depths: an experimental study. J. Petrol. 49, 717–740 (2008).

    Article  Google Scholar 

  56. 56

    Johnson, M. C. & Plank, T. Dehydration and melting experiments constrain the fate of subducted sediments. Geochem. Geophys. Geosys. 1, 1007 (1999).

    Google Scholar 

  57. 57

    Auzanneau, E., Vielzeuf, D. & Schmidt, M. W. Experimental evidence of decompression melting during exhumation of subducted continental crust. Contrib. Mineral. Petrol. 152, 125–148 (2006).

    Article  Google Scholar 

  58. 58

    Thomsen, T. B. & Schmidt, M. W. Melting of carbonated pelites at 2.5–5.0 GPa, silicate-carbonatite liquid immiscibility, and potassium–carbon metasomatism of the mantle. Earth Planet. Sci. Lett. 267, 17–31 (2008).

    Article  Google Scholar 

  59. 59

    Tsuno, K. & Dasgupta, R. The effect of carbonates on near-solidus melting of pelite at 3 GPa: relative efficiency of H2O and CO2 subduction. Earth Planet. Sci. Lett. 319, 185–196 (2012).

    Article  Google Scholar 

  60. 60

    Laurie, A. & Stevens, G. Water-present eclogite melting to produce Earth’s early felsic crust. Chem. Geol. 314, 83–95 (2012).

    Article  Google Scholar 

  61. 61

    Prouteau, G., Scaillet, B., Pichavant, M. & Maury, R. Evidence for mantle metasomatism by hydrous silicic melts derived from subducted oceanic crust. Nature 410, 197–200 (2001).

    Article  Google Scholar 

  62. 62

    Qian, Q. & Hermann, J. Partial melting of lower crust at 10–15 kbar: constraints on adakite and TTG formation. Contrib. Mineral. Petrol. 165, 1195–1224 (2013).

    Article  Google Scholar 

  63. 63

    Médard, E., McCammon, C. A., Barr, J. A. & Grove, T. L. Oxygen fugacity, temperature reproducibility, and H2O contents of nominally anhydrous piston-cylinder experiments using graphite capsules. Am. Mineral. 93, 1838–1844 (2008).

    Article  Google Scholar 

  64. 64

    Grove, T. L. Use of FePt alloys to eliminate the iron loss problem in 1 atmosphere gas mixing experiments: theoretical and practical considerations. Contrib. Mineral. Petrol. 78, 298–304 (1981).

    Article  Google Scholar 

  65. 65

    Kessel, R., Beckett, J. R. & Stolper, E. M. Thermodynamic properties of the Pt–Fe system. Am. Mineral. 86, 1003–1014 (2001).

    Article  Google Scholar 

  66. 66

    O’Neill, H. S. Quartz–fayalite–iron and quartz–fayalite–magnetite equilibria and the free energy of formation of fayalite (Fe2SiO4) and magnetite (Fe3O4). Am. Mineral. 72, 67–75 (1987).

    Google Scholar 

  67. 67

    Frost, D. J. & Wood, B. J. Experimental measurements of the fugacity of CO2 and graphite/diamond stability from 35 to 77 kbar at 925 to 1,650 °C. Geochim. Cosmochim. Acta 61, 1565–1574 (1997).

    Article  Google Scholar 

  68. 68

    Tamic, N., Behrens, H. & Holtz, F. The solubility of H2O and CO2 in rhyolitic melts in equilibrium with a mixed CO2-H2O fluid phase. Chem. Geol. 174, 333–347 (2001).

    Article  Google Scholar 

  69. 69

    Lange, R. A. & Carmichael, I. S. E. Densities of Na2O–K2O–CaO–MgO–FeO–Fe2O3–Al2O3–TiO2–SiO2 liquids—new measurements and derived partial molar properties. Geochim. Cosmochim. Acta 51, 2931–2946 (1987).

    Article  Google Scholar 

  70. 70

    Silver, L. & Stolper, E. Water in albitic glasses. J. Petrol. 30, 667–709 (1989).

    Article  Google Scholar 

  71. 71

    Silver, L. A., Ihinger, P. D & Stolper, E. The influence of bulk composition on the speciation of water in silicate glasses. Contrib. Mineral. Petrol. 104, 142–162 (1990).

    Article  Google Scholar 

  72. 72

    Eguchi, J. & Dasgupta, R. CO2 content of andesitic melts at graphite saturated upper mantle conditions with implications for redox state of oceanic basalt source regions and remobilization of reduced carbon from subducted eclogite. Contrib. Mineral. Petrol. 172, 12 (2017).

    Article  Google Scholar 

  73. 73

    Li, Y., Dasgupta, R., Tsuno, K., Monteleone, B. & Shimizu, N. Carbon and sulfur budget of the silicate Earth explained by accretion of differentiated planetary embryos. Nat. Geosci. 9, 781–785 (2016).

    Article  Google Scholar 

  74. 74

    Fine, G. & Stolper, E. Dissolved carbon dioxide in basaltic glasses—concentrations and speciation. Earth Planet. Sci. Lett. 76, 263–278 (1986).

    Article  Google Scholar 

  75. 75

    Stolper, E. & Holloway, J. R. Experimental determination of the solubility of carbon dioxide in molten basalt at low pressure. Earth Planet. Sci. Lett. 87, 397–408 (1988).

    Article  Google Scholar 

  76. 76

    Chase, M. W. et al. NIST JANAF thermochemical tables. Stand. Ref. Database http://kinetics.nist.gov/janaf (1985).

  77. 77

    Haynes, W. M. CRC Handbook of Chemistry and Physics 93rd edn (CRC/Taylor and Francis, 2012).

    Google Scholar 

  78. 78

    Blank, J. G., Stolper, E. M. & Carroll, M. R. Solubilities of carbon dioxide and water in rhyolitic melt at 850 °C and 750 bars. Earth Planet. Sci. Lett. 119, 27–36 (1993).

    Article  Google Scholar 

  79. 79

    Morizet, Y., Brooker, R. A. & Kohn, S. C. CO2 in haplo-phonolite melt: solubility, speciation and carbonate complexation. Geochim. Cosmochim. Acta 66, 1809–1820 (2002).

    Article  Google Scholar 

  80. 80

    Turcotte, D. L. & Schubert, G. Geodynamics 2nd edn (Cambridge Univ. Press, 2002).

    Google Scholar 

  81. 81

    O’ Neill, C., Lenardic, A. & Condie, K. C. in Continent Formation Through Time Vol. 389 (eds Roberts, N. M. W. et al.) (Geological Society, 2013).

    Google Scholar 

  82. 82

    McCulloch, M. T. & Bennett, V. C. Progressive growth of the Earth’s continental crust and depleted mantle: geochemical constraints. Geochim. Cosmochim. Acta 58, 4717–4738 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

R.D. acknowledges funding from NSF grant OCE-1338842 and support from the Deep Carbon Observatory. The authors thank M. B. Weller and C.-T. Lee for comments and discussions. A formal review by T. Lyons is gratefully acknowledged.

Author information

Affiliations

Authors

Contributions

M.S.D. conducted and analysed the experiments, calibrated the thermodynamic model and performed the model calculations as part of her PhD dissertation. R.D. guided M.S.D. as her thesis adviser. Both authors developed the idea presented in the paper, discussed the data and the models, and co-wrote the manuscript.

Corresponding authors

Correspondence to Megan S. Duncan or Rajdeep Dasgupta.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2455 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Duncan, M., Dasgupta, R. Rise of Earth’s atmospheric oxygen controlled by efficient subduction of organic carbon. Nature Geosci 10, 387–392 (2017). https://doi.org/10.1038/ngeo2939

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing