Inland thinning on the Greenland ice sheet controlled by outlet glacier geometry


Greenland’s contribution to future sea-level rise remains uncertain and a wide range of upper and lower bounds has been proposed. These predictions depend strongly on how mass loss—which is focused at the termini of marine-terminating outlet glaciers—can penetrate inland to the ice-sheet interior. Previous studies have shown that, at regional scales, Greenland ice sheet mass loss is correlated with atmospheric and oceanic warming. However, mass loss within individual outlet glacier catchments exhibits unexplained heterogeneity, hindering our ability to project ice-sheet response to future environmental forcing. Using digital elevation model differencing, we spatially resolve the dynamic portion of surface elevation change from 1985 to present within 16 outlet glacier catchments in West Greenland, where significant heterogeneity in ice loss exists. We show that the up-glacier extent of thinning and, thus, mass loss, is limited by glacier geometry. We find that 94% of the total dynamic loss occurs between the terminus and the location where the down-glacier advective speed of a kinematic wave of thinning is at least three times larger than its diffusive speed. This empirical threshold enables the identification of glaciers that are not currently thinning but are most susceptible to future thinning in the coming decades.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Dynamic surface elevation change and mass loss.
Figure 2: Centreline profile of Kangilernata Sermia (KAN).
Figure 3: Péclet number running maxima and percentage unit volume loss.


  1. 1

    Wouters, B., Chambers, D. & Schrama, E. J. O. GRACE observes small-scale mass loss in Greenland. Geophys. Res. Lett. 35, L20501 (2008).

    Article  Google Scholar 

  2. 2

    Harig, C. & Simons, F. J. Mapping Greenland’s mass loss in space and time. Proc. Natl Acad. Sci. USA 109, 19934–19937 (2012).

    Article  Google Scholar 

  3. 3

    Schrama, E. J. O. & Wouters, B. Revisiting Greenland ice sheet mass loss observed by GRACE. J. Geophys. Res. 116, B02407 (2011).

    Article  Google Scholar 

  4. 4

    Velicogna, I., Sutterley, T. C. & van den Broeke, M. R. Regional acceleration in ice mass loss from Greenland and Antarctica using GRACE time-variable gravity data. Geophys. Res. Lett. 41, 8130–8137 (2014).

    Article  Google Scholar 

  5. 5

    Murray, T. et al. Extensive retreat of Greenland tidewater glaciers, 2000–2010. Arct. Antarct. Alp. Res. 47, 427–447 (2015).

    Article  Google Scholar 

  6. 6

    Csatho, B. M. et al. Laser altimetry reveals complex pattern of Greenland ice sheet dynamics. Proc. Natl Acad. Sci. USA 111, 18478–18483 (2014).

    Article  Google Scholar 

  7. 7

    Moon, T., Joughin, I., Smith, B. & Howat, I. 21st-century evolution of Greenland outlet glacier velocities. Science 336, 576–578 (2012).

    Article  Google Scholar 

  8. 8

    Kjaer, K. H. et al. Aerial photographs reveal late-20th-century dynamic ice loss in northwestern Greenland. Science 337, 569–573 (2012).

    Article  Google Scholar 

  9. 9

    Howat, I. M., Joughin, I., Fahnestock, M., Smith, B. E. & Scambos, T. A. Synchronous retreat and acceleration of southeast Greenland outlet glaciers 2000–06 ice dynamics and coupling to climate. J. Glaciol. 54, 646–660 (2008).

    Article  Google Scholar 

  10. 10

    Bevan, S. L., Luckman, A. J. & Murray, T. Glacier dynamics over the last quarter of a century at Helheim, Kangerdlugssuaq and 14 other major Greenland outlet glaciers. Cryosphere 6, 923–937 (2012).

    Article  Google Scholar 

  11. 11

    Khan, S. A. et al. Sustained mass loss of the northeast Greenland ice sheet triggered by regional warming. Nat. Clim. Change 4, 292–299 (2014).

    Article  Google Scholar 

  12. 12

    Enderlin, E. M. et al. An improved mass budget for the Greenland ice sheet. Geophys. Res. Lett. 41, 866–872 (2014).

    Article  Google Scholar 

  13. 13

    Price, S. F., Payne, A. J., Howat, I. M. & Smith, B. E. Committed sea-level rise for the next century from Greenland ice sheet dynamics during the past decade. Proc. Natl Acad. Sci. USA 108, 8978–8983 (2011).

    Article  Google Scholar 

  14. 14

    Nick, F. M., Vieli, A., Howat, I. M. & Joughin, I. Large-scale changes in Greenland outlet glacier dynamics triggered at the terminus. Nat. Geosci. 2, 110–114 (2009).

    Article  Google Scholar 

  15. 15

    Konrad, H. et al. Uneven onset and pace of ice-dynamical imbalance in the Amundsen Sea Embayment, West Antarctica. Geophys. Res. Lett. 44, 910–918 (2017).

    Article  Google Scholar 

  16. 16

    Pfeffer, W. T., Harper, J. T. & O’Neel, S. Kinematic constraints on glacier contributions to 21st-century sea-level rise. Science 321, 1340–1343 (2008).

    Article  Google Scholar 

  17. 17

    Nick, F. M. et al. Future sea-level rise from Greenland’s main outlet glaciers in a warming climate. Nature 497, 235–238 (2013).

    Article  Google Scholar 

  18. 18

    Moore, J. C., Grinsted, A., Zwinger, T. & Jevrejeva, S. Semiempirical and process-based global sea level projections. Rev. Geophys. 51, 484–522 (2013).

    Article  Google Scholar 

  19. 19

    Korsgaard, N. J. et al. Digital elevation model and orthophotographs of Greenland based on aerial photographs from 1978–1987. Sci. Data 3, 160032 (2016).

    Article  Google Scholar 

  20. 20

    Morlighem, M., Rignot, E. & Willis, J. Improving bed topography mapping of Greenland glaciers using NASA’s Oceans Melting Greenland (OMG) data. Oceanography 29, 62–71 (2016).

    Article  Google Scholar 

  21. 21

    Nye, J. F. The response of glaciers and ice-sheets to seasonal and climatic changes. Proc. R. Soc. A 256, 559–584 (1960).

    Article  Google Scholar 

  22. 22

    Pritchard, H. D., Arthern, R. J., Vaughan, D. G. & Edwards, L. A. Extensive dynamic thinning on the margins of the Greenland and Antarctic ice sheets. Nature 461, 971–975 (2009).

    Article  Google Scholar 

  23. 23

    Pfeffer, W. T. A simple mechanism for irreversible tidewater glacier retreat. J. Geophys. Res. 112, F03S25 (2007).

    Article  Google Scholar 

  24. 24

    van der Veen, C. J. Greenland ice sheet response to external forcing. J. Geophys. Res. 106, 34047–34058 (2001).

    Article  Google Scholar 

  25. 25

    Howat, I. M., Negrete, A. & Smith, B. E. The Greenland Ice Mapping Project (GIMP) land classification and surface elevation data sets. Cryosphere 8, 1509–1518 (2014).

    Article  Google Scholar 

  26. 26

    Shean, D. E. et al. An automated open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. Int. Soc. Photogramm. 116, 101–117 (2016).

    Google Scholar 

  27. 27

    Rignot, E., Box, J. E., Burgess, E. & Hanna, E. Mass balance of the Greenland ice sheet from 1958 to 2007. Geophys. Res. Lett. 35, L20502 (2008).

    Article  Google Scholar 

  28. 28

    Noël, B. et al. Evaluation of the updated regional climate model RACMO2.3: summer snowfall impact on the Greenland ice sheet. Cryosphere 9, 1831–1844 (2015).

    Article  Google Scholar 

  29. 29

    Cuffey, K. M. & Paterson, W. S. B. The Physics of GlaciersChap. 11 (Academic, 2010).

    Google Scholar 

  30. 30

    Kamb, B. & Echelmeyer, K. A. Stress-gradient coupling in glacier flow: I. Longitudinal averaging of the influence of ice thickness and surface slope. J. Glaciol. 32, 267–284 (1986).

    Article  Google Scholar 

Download references


We would like to thank the Polar Geospatial Center for providing the WorldView stereo imagery. This work was funded by NASA Grant NNX12AP50G, by funding from the University of Texas Aerospace Engineering department, and a University of Texas Institute for Geophysics Postdoctoral Fellowship to T.C.B.

Author information




D.F., T.C.B. and G.A.C. designed the study. D.F. created the WorldView DEMs, calculated catchment mass changes, and performed the kinematic wave analysis. D.F., T.C.B. and G.A.C. interpreted the results. N.J.K. and K.H.K. created the 1985 DEM. M.M. processed the mass-conserving bed for the study region. B.N. and M.v.d.B. provided downscaled SMB data. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Denis Felikson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6166 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Felikson, D., Bartholomaus, T., Catania, G. et al. Inland thinning on the Greenland ice sheet controlled by outlet glacier geometry. Nature Geosci 10, 366–369 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing