Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering


The onset of the late Palaeozoic ice age about 340 million years ago has been attributed to a decrease in atmospheric CO2 concentrations associated with expansion of land plants, as plants both enhance silicate rock weathering—which consumes CO2—and increase the storage of organic carbon on land. However, plant expansion and carbon uptake substantially predate glaciation. Here we use climate and carbon cycle simulations to investigate the potential effects of the uplift of the equatorial Hercynian mountains and the assembly of Pangaea on the late Palaeozoic carbon cycle. In our simulations, mountain uplift during the Late Carboniferous caused an increase in physical weathering that removed the thick soil cover that had inhibited silicate weathering. The resulting increase in chemical weathering was sufficient to cause atmospheric CO2 concentrations to fall below the levels required to initiate glaciation. During the Permian, the lowering of the mountains led to a re-establishment of thick soils, whilst the assembly of Pangaea promoted arid conditions in continental interiors that were unfavourable for silicate weathering. These changes allowed CO2 concentrations to rise to levels sufficient to terminate the glacial event. Based on our simulations, we suggest that tectonically influenced carbon cycle changes during the late Palaeozoic were sufficient to initiate and terminate the late Palaeozoic ice age.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Time evolution of the isotopic composition of seawater, atmospheric CO2 levels and the organic carbon burial over the late Palaeozoic.
Figure 2: Calculated contribution of the weathering of the Hercynian mountains to the global weathering flux.
Figure 3: Palaeogeographic pattern of the CO2 consumption by silicate weathering.


  1. 1

    Montanez, I. P. & Poulsen, C. J. The Late Paleozoic ice age: an evolving paradigm. Annu. Rev. Earth Planet. Sci. 41, 629–656 (2013).

    Article  Google Scholar 

  2. 2

    Isbell, J. L. et al. Glacial paradoxes during the late Paleozoic ice age: evaluating the equilibrium line altitude as a control on glaciation. Gondwana Res. 22, 1–19 (2012).

    Article  Google Scholar 

  3. 3

    Montanez, I. P. et al. Climate, pCO2 and terrestrial carbon cycle linkages during late Paleozoic glacial–interglacial cycles. Nat. Geosci. 9, 824–828 (2016).

    Google Scholar 

  4. 4

    Kump, L. R. & Arthur, M. A. in Tectonic Uplift and Climate Change (ed. Ruddiman, W. F.) 399–426 (Springer, 1997).

    Google Scholar 

  5. 5

    Berner, R. A. The Phanerozoic Carbon Cycle (Oxford Univ. Press, 2004).

    Google Scholar 

  6. 6

    Bergman, N. M., Lenton, T. M. & Watson, A. J. COPSE: a new model of biogeochemical cycling over Phanerozoic time. Am. J. Sci. 304, 397–437 (2004).

    Article  Google Scholar 

  7. 7

    Davies, N. S. & Gibling, M. The sedimentary record of Carboniferous river: continuing influence of land plant evolution on alluvial process and Palaeozoic ecosystems. Earth Sci. Rev. 120, 40–79 (2013).

    Article  Google Scholar 

  8. 8

    Nelsen, M. P., Dimichele, W. A., Peters, S. E. & Boyce, C. K. Delayed fungal evolution did not cause the Paleozoic peak in coal production. Proc. Natl Acad. Sci. USA 9, 2442–2447 (2016).

    Article  Google Scholar 

  9. 9

    Montanez, I. P. A late Paleozoic climate window of opportunity. Proc. Natl Acad. Sci. USA 113, 2334–2336 (2016).

    Article  Google Scholar 

  10. 10

    Stallard, R. F. Relating chemical and physical erosion. Rev. Mineral. 31, 543–564 (1995).

    Google Scholar 

  11. 11

    Gabbet, E. J. & Mudd, S. M. A theoretical model coupling chemical weathering rates with denudation rates. Geology 37, 151–154 (2009).

    Article  Google Scholar 

  12. 12

    Hilley, G. E., Chamberlain, C. P., Moon, S., Porder, S. & Willet, S. D. Competition between erosion and reaction kinetics in controlling silicate-weathering rates. Earth Planet. Sci. Lett. 293, 191–199 (2010).

    Article  Google Scholar 

  13. 13

    Carretier, S., Godderis, Y., Delannoy, T. & Rouby, D. Mean bedrock-to-saprolite conversion and erosion rates during mountain growth and decline. Geomorphology 209, 39–52 (2014).

    Article  Google Scholar 

  14. 14

    Donnadieu, Y. et al. A GEOCLIM simulation of climatic and biogeochemical consequences of Pangea breakup. Geochem. Geophys. Geosyst. 7, Q11019 (2006).

    Article  Google Scholar 

  15. 15

    Godderis, Y., Donnadieu, Y., Le Hir, G., Lefebvre, V. & Nardin, E. The role of palaeogeography in the Phanerozoic history of atmospheric CO2 and climate. Earth-Sci. Rev. 128, 122–138 (2014).

    Article  Google Scholar 

  16. 16

    Oliva, P., Viers, J. & Dupré, B. Chemical weathering in granitic crystalline environments. Chem. Geol. 202, 225–256 (2003).

    Article  Google Scholar 

  17. 17

    Donnadieu, Y., Puceat, E., Moiroud, M., Guillocheau, F. & Deconinck, J. F. A better-ventilated ocean triggered by Late Cretaceous changes in continental configuration. Nat. Commun. 7, 10316 (2016).

    Article  Google Scholar 

  18. 18

    Godderis, Y., Donnadieu, Y., Tombozafy, M. & Dessert, C. Shield effect on continental weathering: implication for climatic evolution of the Earth at the geological timescale. Geoderma 145, 439–448 (2008).

    Article  Google Scholar 

  19. 19

    Stallard, R. F. & Edmond, J. M. Geochemistry of the Amazon: 3. Weathering chemistry and limits to dissolved inputs. J. Geophys. Res. 92, 8293–8302 (1987).

    Article  Google Scholar 

  20. 20

    Strudley, M., Murray, A. & Haff, P. Emergence of pediments, tors, and piedmont junction from a bedrock weathering-regolith thickness feedback. Geology 34, 805–808 (2006).

    Article  Google Scholar 

  21. 21

    West, J. A. Thickness of the chemical weathering zone and implications for erosional and climatic drivers of weathering and for carbon-cycle feedbacks. Geology 40, 811–814 (2012).

    Article  Google Scholar 

  22. 22

    Golonka, J. in Phanerozoic Reef Patterns Vol. 72 (eds Kiessling, W., Flügel, E. & Golonka, J.) 21–75 (SEPM Special Publications, 2002).

    Google Scholar 

  23. 23

    Royer, D. L. in The Atmopshere History Vol. 6 (ed. Farquhar, J.) 251–267 (Elsevier, 2014).

    Google Scholar 

  24. 24

    Tabor, N. J. & Poulsen, C. J. Paleoclimate across the Late Pennsylvanian–Early Permian tropical paleolatitudes: a review of climate indicators, their distribution, and relation to paleophysiographic climate factors. Palaeogeogr. Palaeoclimatol. Palaeoecol. 268, 293–310 (2008).

    Article  Google Scholar 

  25. 25

    Lowry, D. P., Poulsen, C. J., Horton, D. E., Torsvik, T. & Pollard, D. Thresholds for Paleozoic ice sheet initiation. Geology 42, 627–630 (2014).

    Article  Google Scholar 

  26. 26

    Goddéris, Y. & François, L. M. The Cenozoic evolution of the strontium and carbon cycles: relative importance of continental erosion and mantle exchanges. Chem. Geol. 126, 169–190 (1995).

    Article  Google Scholar 

  27. 27

    Galy, A., France-Lanord, C. & Derry, L. A. The strontium isotopic budget of Himalayan rivers in Nepal and Bangladesh. Geochem. Cosmochim. Acta 63, 1905–1925 (2002).

    Article  Google Scholar 

  28. 28

    Li, G. & Elderfield, H. Evolution of carbon cycle over the past 100 million years. Geochem. Cosmochim. Acta 103, 11–25 (2013).

    Article  Google Scholar 

  29. 29

    Millot, R., Gaillardet, J., Dupré, B. & Allègre, C. J. The global control of silicate weathering rates and the coupling with physical erosion: new insights from rivers of the Canadian Shield. Earth Planet. Sci. Lett. 196, 83–98 (2002).

    Article  Google Scholar 

  30. 30

    West, A., Galy, A. & Bickle, M. Tectonic and climatic controls on silicate weathering. Earth Planet. Sci. Lett. 235, 211–228 (2005).

    Article  Google Scholar 

  31. 31

    Galy, V. et al. Efficient organic carbon burial in the Bengal fan sustained by the Himalayan erosional system. Nature 450, 407–410 (2007).

    Article  Google Scholar 

  32. 32

    Galy, V., Peucker-Ehrenbrink, B. & Eglinton, T. Global carbon export from the terrestrial biosphere controlled by erosion. Nature 521, 204–207 (2015).

    Article  Google Scholar 

  33. 33

    Veizer, J. et al. 87Sr/86Sr, δ13C and δ18O evolution of Phanerozoic seawater. Chem. Geol. 161, 59–88 (1999).

    Article  Google Scholar 

  34. 34

    Royer, D. in Treatise on Geochemistry Vol. 6 (eds Holland, H. D. & Turekian, K. K.) 251–267 (Elsevier, 2014).

    Google Scholar 

  35. 35

    Francois, L. M. & Godderis, Y. Isotopic constraints on the Cenozoic evolution of the carbon cycle. Chem. Geol. 145, 177–212 (1998).

    Article  Google Scholar 

  36. 36

    Kump, L. R. & Arthur, M. A. Interpreting carbon-isotope excursions: carbonates and organic matter. Chem. Geol. 161, 181–198 (1999).

    Article  Google Scholar 

  37. 37

    Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate–silicate geochemical cycle an its effects on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 284, 641–683 (1983).

    Article  Google Scholar 

  38. 38

    Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of Earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  Google Scholar 

  39. 39

    Berner, R. A. & Caldeira, K. The need for mass balance and feedback in the geochemical carbon cycle. Geology 25, 955 (1997).

    Article  Google Scholar 

  40. 40

    Zeebe, R. & Caldeira, K. Close mass balance of long-term carbon fluxes from ice-core CO2 and ocean chemistry records. Nat. Geosci. 1, 312–315 (2008).

    Article  Google Scholar 

  41. 41

    Jacob, R. L. Low Frequency Variability in a Simulated Atmosphere Ocean System PhD thesis, Univ. Winsconsin (1997).

  42. 42

    Pierrehumbert, R. T. High levels of atmospheric carbon dioxide necessary for the termination of global glaciation. Nature 429, 646–649 (2004).

    Article  Google Scholar 

  43. 43

    Lefebvre, V., Donnadieu, Y., Sepulchre, P., Swingedouw, D. & Zhang, Z. S. Deciphering the role of southern gateways and carbon dioxide on the onset of the Antarctic Circumpolar Current. Paleoceanography 27, PA002345 (2012).

    Article  Google Scholar 

  44. 44

    Gough, D. O. Solar interior structure and luminosity variations. Sol. Phys. 74, 21–34 (1981).

    Article  Google Scholar 

  45. 45

    Gaillardet, J., Dupré, B., Louvat, P. & Allègre, C. J. Global silicate weathering and CO2 consumption rates deduced from the chemistry of the large rivers. Chem. Geol. 159, 3–30 (1999).

    Article  Google Scholar 

  46. 46

    Dessert, C., Dupre, B., Gaillardet, J., Francois, L. M. & Allegre, C. J. Basalt weathering laws and the impact of basalt weathering on the global carbon cycle. Chem. Geol. 202, 257–273 (2003).

    Article  Google Scholar 

  47. 47

    Whipple, K. X. & Tucker, G. E. Dynamics of the stream-power river incision model: implications for height limits of mountain ranges, landscapes response timescales, and research needs. J. Geophys. Res. 104, 17661–17674 (1999).

    Article  Google Scholar 

  48. 48

    Heimsath, A. M., Hancock, G. R. & Fink, D. The ‘humped’ soil production function: eroding Arnhem Land, Australia. Earth Surf. Process. Landf. 34, 1674–1684 (2009).

    Article  Google Scholar 

  49. 49

    Gilbert, G. K. Report on the Geology of the Henry Mountains (Utah) (Department of the Interior, 1877).

  50. 50

    Norton, K. P., Molnar, P. & Schlunegger, F. The role of climate-driven chemical weathering on soil production. Geomorphology 204, 510–517 (2014).

    Article  Google Scholar 

  51. 51

    Gabet, E. J. & Mudd, S. M. Bedrock erosion by root fracture and tree throw: a coupled biogeomorphic model to explore the humped soil production function and the persistence of hillslope soils. J. Geophys. Res. 115, F04005 (2010).

    Article  Google Scholar 

  52. 52

    Syvitski, J. P. M., Peckham, S. D., Hilberman, R. & Mulder, T. Predicting the terrestrial flux of sediment to the global ocean: a planetary perspective. Sedim. Geol. 162, 5–24 (2003).

    Article  Google Scholar 

  53. 53

    Farr, T. G. et al. The shuttle radar topography mission. Rev. Geophys. 45, RG2004 (2007).

    Article  Google Scholar 

Download references


CNRS INSU/SYSTER program and the ANR projects TERRES and Anox-Sea have provided funding for this work. We thank the CEA/CCRT for providing access to the HPC resources of TGCC under the allocation 2015–012212 made by GENCI.

Author information




Y.G. and Y.D. conceived the study and wrote the paper with contributions from all co-authors. The physical erosion model was developed by Y.G., S.C. and Y.D.; Y.G. and Y.D. performed the simulations. G.D., M.A., M.M. and V.R. reconstructed the palaeogeographic settings of the late Palaeozoic (five maps).

Corresponding authors

Correspondence to Yves Goddéris or Yannick Donnadieu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 6154 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goddéris, Y., Donnadieu, Y., Carretier, S. et al. Onset and ending of the late Palaeozoic ice age triggered by tectonically paced rock weathering. Nature Geosci 10, 382–386 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing