Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Experimental and observational evidence for plume-induced subduction on Venus


Why Venus lacks plate tectonics remains an unanswered question in terrestrial planet evolution. There is observational evidence for subduction—a requirement for plate tectonics—on Venus, but it is unclear why the features have characteristics of both mantle plumes and subduction zones. One explanation is that mantle plumes trigger subduction. Here we compare laboratory experiments of plume-induced subduction in a colloidal solution of nanoparticles to observations of proposed subduction sites on Venus. The experimental fluids are heated from below to produce upwelling plumes, which in turn produce tensile fractures in the lithosphere-like skin that forms on the upper surface. Plume material upwells through the fractures and spreads above the skin, analogous to volcanic flooding, and leads to bending and eventual subduction of the skin along arcuate segments. The segments are analogous to the semi-circular trenches seen at two proposed sites of plume-triggered subduction at Quetzalpetlatl and Artemis coronae. Other experimental deformation structures and subsurface density variations are also consistent with topography, radar and gravity data for Venus. Scaling analysis suggests that this regime with limited, plume-induced subduction is favoured by a hot lithosphere, such as that found on early Earth or present-day Venus.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Experiment in aqueous colloidal dispersion dried from above and heated from below.
Figure 2: Artemis Corona.
Figure 3: Quetzalpetlatl Corona.
Figure 4: Close up on the boundary between the subducting lithosphere and the plume material.
Figure 5: Gravity data for Artemis and Quetzalpetlatl Coronae.
Figure 6: Necessary condition for plume-induced subduction based on the elastic bending criterion (KS > 1) (see Methods).


  1. 1

    Noack, L. et al. Can the interior structure influence the habitability of a rocky planet? Planet. Space Sci. 98, 14–29 (2014).

    Article  Google Scholar 

  2. 2

    Smrekar, S. E. et al. in Exploring Venus as a Terrestrial Planet (eds Esposito, L. W., Stofan, E. R. & Cravens, T. E.) 43–72 (AGU Geophysical Monograph 176, 2007).

    Google Scholar 

  3. 3

    Crameri, F. B. & Kaus, J. P. Parameters that control lithospheric—scale thermal localization on terrestrial planets. Geophys. Res. Lett. 37, L09308 (2010).

    Article  Google Scholar 

  4. 4

    Bercovici, D. & Ricard, Y. Plate tectonics, damage and inheritance. Nature 508, 513–516 (2014).

    Article  Google Scholar 

  5. 5

    McKenzie, D. et al. Features on Venus generated by plate boundary processes. J. Geophys. Res. 97, 13533–13544 (1992).

    Article  Google Scholar 

  6. 6

    Sandwell, D. T. & Schubert, G. Evidence for retrograde lithospheric subduction on Venus. Science 257, 766–770 (1992).

    Article  Google Scholar 

  7. 7

    Hansen, V. L. & Olive, A. Artemis, Venus: the largest tectonomagmatic feature in the solar system? Geology 38, 467–470 (2010).

    Article  Google Scholar 

  8. 8

    Sandwell, D. T. & Schubert, G. Flexural ridges, trenches, and outer rises around coronae on Venus. J. Geophys Res. 97, 16069–16083 (1992).

    Article  Google Scholar 

  9. 9

    Niu, Y., O’Hara, M. J. & Pearce, J. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: a petrological perspective. J. Petrol. 44, 851–866 (2003).

    Article  Google Scholar 

  10. 10

    Whattam, S. A. & Stern, R. J. Late Cretaceous plume-induced subduction initiation along the southern margin of the Caribbean and NW South America: the first documented example with implications for the onset of plate tectonics. Gondwana Res. 27, 38–63 (2015).

    Article  Google Scholar 

  11. 11

    Burov, E. & Cloetingh, S. Plume-like upper mantle instabilities drive subduction initiation. Geophys. Res. Lett. 37, L03309 (2010).

    Article  Google Scholar 

  12. 12

    Ueda, K., Gerya, T. & Sobolev, S. V. Subduction initiation by thermal–chemical plumes: numerical studies. Phys. Earth Planet. Inter. 171, 296–312 (2008).

    Article  Google Scholar 

  13. 13

    Gerya, T. V., Stern, R. J., Sobolev, S. V. & Whattam, S. A. Plate tectonics on the Earth triggered by plume-induced subduction initiation. Nature 527, 221–225 (2015).

    Article  Google Scholar 

  14. 14

    Stofan, E. R., Bindschadler, D. L., Head, J. W. & Parmentier, E. M. Coronae on Venus: models of origin. J. Geophys. Res. 96, 20933–20946 (1991).

    Article  Google Scholar 

  15. 15

    Smrekar, S. E. & Stofan, E. R. Coupled upwelling and delamination: a new mechanism for coronae formation and heat loss on Venus. Science 277, 1289–1294 (1997).

    Article  Google Scholar 

  16. 16

    Piskorz, D., Elkins-Tanton, L. T. & Smrekar, S. E. Coronae formation on Venus via extension and lithospheric instability. J. Geophys. Res. 119, 2568–2582 (2015).

    Article  Google Scholar 

  17. 17

    Hoogenboom, T. & Houseman, G. A. Rayleigh–Taylor instability as a mechanism for corona formation on Venus. Icarus 180, 292–307 (2006).

    Article  Google Scholar 

  18. 18

    Dombard, A. J., Johnson, C. L., Richards, M. A. & Solomon, S. C. A magmatic loading model for coronae on Venus. J. Geophys. Res. 112, E04006 (2007).

    Article  Google Scholar 

  19. 19

    Gerya, T. V. Plume-induced crustal convection: 3D thermomechanical model and implications for the origin of novae and coronae on Venus. Earth Planet. Sci. Lett. 391, 183–192 (2014).

    Article  Google Scholar 

  20. 20

    Brown, C. D. & Grimm, R. E. Tectonics of Artemis Chasma: a Venusian ‘plate’ boundary. Icarus 117, 219–249 (1995).

    Article  Google Scholar 

  21. 21

    Schubert, G. & Sandwell, D. T. A global survey of possible subduction sites on Venus. Icarus 117, 173–196 (1995).

    Article  Google Scholar 

  22. 22

    Fowler, A. C. & O-Brien, S. B. G. A mechanism for episodic subduction on Venus. J. Geophys. Res. 101, 4755–4763 (1996).

    Article  Google Scholar 

  23. 23

    Hansen, V. L. & Phillips, R. J. Tectonics and volcanism of Eastern Aphrodite Terra, Venus: no subduction no spreading. Science 260, 526–530 (1993).

    Article  Google Scholar 

  24. 24

    Goldfinger, C. et al. Transverse structural trends along the Oregon convergent margin: implications for Cascadia earthquake potential and crustal rotations. Geology 20, 141–144 (1992).

    Article  Google Scholar 

  25. 25

    Di Giuseppe, E., Davaille, A., Mittelstaedt, E. & François, M. Rheological and mechanical properties of silica colloids: from Newtonian liquid to brittle behavior. Rheol. Acta 51, 451–465 (2012).

    Article  Google Scholar 

  26. 26

    Müller, G. Starch columns: analog model for basalt columns. J. Geophys. Res. 103, 15239–15253 (1998).

    Article  Google Scholar 

  27. 27

    Amiri, A., Oye, G. & Sjöblom, J. Temperature and pressure effects on stability and gelation properties of silica suspensions. Colloids Surf. 378, 14–21 (2011).

    Article  Google Scholar 

  28. 28

    Schubert, G., Turcotte, D. L. & Olson, P. Mantle Convection in the Earth and Planets (Cambridge Univ. Press, 2001).

    Book  Google Scholar 

  29. 29

    Olson, P. & Nam, I. S. Formation of seafloor swells by mantle plumes. J. Geophys. Res. 91, 7181–7191 (1986).

    Article  Google Scholar 

  30. 30

    Griffths, R. W., Gurnis, M. & Eitelberg, G. Holographic measurements of surface topography in laboratory models of mantle hotspots. Geophys. J. 96, 1–19 (1989).

    Article  Google Scholar 

  31. 31

    Koch, D. M. & Manga, M. Neutrally buoyant diapirs: a model for Venus coronae. Geophys. Res. Lett. 23, 225–228 (1996).

    Article  Google Scholar 

  32. 32

    Kemp, D. V. & Stevenson, D. J. A tensile, flexural model for the initiation of subduction. Geophys. J. Int. 125, 73–94 (1996).

    Article  Google Scholar 

  33. 33

    Vermorel, R., Vandenberghe, N. & Villermaux, E. Radial cracks in perforated thin sheets. Phys. Rev. Lett. 104, 175502 (2010).

    Article  Google Scholar 

  34. 34

    Olson, P., Schubert, G., Anderson, C. & Goldman, P. Plume formation and lithosphere erosion: a comparison of laboratory and numerical experiments. J. Geophys. Res. 93, 15065–15084 (1988).

    Article  Google Scholar 

  35. 35

    Androvandi, S., Davaille, A., Limare, A., Fouquier, A. & Marais, C. At least three scales of convection in a mantle with strongly temperature-dependent viscosity. Phys. Earth Planet. Inter. 188, 132–141 (2011).

    Article  Google Scholar 

  36. 36

    Schmalholz, S. M. A simple analytical solution for slab detachment. Earth Planet. Sci. Lett. 304, 45–54 (2011).

    Article  Google Scholar 

  37. 37

    Kohlstedt, D. L., Evans, B. & Mackwell, S. J. Strength of the lithosphere: constraints imposed by laboratory experiments. J. Geophys. Res. 100, 17587–17602 (1995).

    Article  Google Scholar 

  38. 38

    Hansen, V. L. Artemis: signature of a deep mantle plume on Venus. Geol. Soc. Am. Bull. 114, 839–848 (2002).

    Article  Google Scholar 

  39. 39

    Ivanov, M. & Head, J. W. Lada Terra rise and Quetzalpetlatl Corona: a region of long-lived mantle upwelling and recent volcanic activity on Venus. Planet. Space Sci. 58, 1880–1894 (2010).

    Article  Google Scholar 

  40. 40

    Brown, C. D. & Grimm, R. E. Lithospheric rheology and flexure at Artemis Chasma, Venus. J. Geophys. Res. 101, 12697–12708 (1996).

    Article  Google Scholar 

  41. 41

    Tanimoto, T. State of stress within a bending spherical shell and its implications for subducting lithosphere. Geophys. J. Int. 134, 199–206 (1998).

    Article  Google Scholar 

  42. 42

    Kratter, K. M., Carter, L. M. & Campbell, D. B. An expanded view of Lada Terra, Venus: new Arecibo radar observations of Quetzalpetlatl Corona and surrounding flows. J. Geophys. Res. 112, E04008 (2007).

    Article  Google Scholar 

  43. 43

    Helbert, J., Müller, N., Kostama, P., Piccioni, G. & Drossart, P. Surface brightness variations seen by VIRTIS on Venus Express and implications for the evolution of the Lada Terra region, Venus. Geophys. Res. Lett. 35, L11201 (2008).

    Article  Google Scholar 

  44. 44

    Smrekar, S. E. et al. Recent hotspot volcanism on Venus from VIRTIS emissivity data. Science 328, 605–608 (2010).

    Article  Google Scholar 

  45. 45

    Schubert, G., Moore, W. B. & Sandwell, D. T. Gravity over coronae and chasmata on Venus. Icarus 112, 130–146 (1994).

    Article  Google Scholar 

  46. 46

    Armann, M. & Tackley, P. J. Simulating the thermochemical magmatic and tectonic evolution of Venus’s mantle and lithosphere: two-dimensional models. J. Geophys. Res. 117, E12003 (2012).

    Article  Google Scholar 

  47. 47

    Crameri, F. & Tackley, P. J. Subduction initiation from a stagnant lid and global overturn: new insights from numerical models with a free surface. Prog. Earth Planet. Sci. 3, 30 (2016).

    Article  Google Scholar 

  48. 48

    Moresi, L. & Solomatov, V. Mantle convection with a brittle lithosphere: thoughts on the global tectonic styles of Earth and Venus. Geophys. J. Int. 133, 669–682 (1998).

    Article  Google Scholar 

  49. 49

    Bjonnes, E. E., Hansen, V. L., James, B. & Swenson, J. B. Equilibrium resurfacing of Venus: results from new Monte Carlo modeling and implications for Venus surface histories. Icarus 217, 451–461 (2012).

    Article  Google Scholar 

  50. 50

    O’Rourke, J. G., Wolf, A. S. & Ehlmann, B. L. Venus: interpreting the spatial distribution of volcanically modified craters. Geophys. Res. Lett. 41, 8252–8260 (2014).

    Article  Google Scholar 

  51. 51

    Brown, L. A., Zukoski, C. F. & White, L. R. Consolidation during drying of aggregated suspensions. AIChE J. 48, 492–502 (2002).

    Article  Google Scholar 

  52. 52

    Style, R. W. & Peppin, S. S. L. Crust formation in drying colloidal suspensions. Proc. R. Soc. A 467, 174–193 (2011).

    Article  Google Scholar 

  53. 53

    Morris, S. & Canright, D. R. A boundary-layer analysis of Benard convection with strongly temperature-dependent viscosity. Phys. Earth Planet. Inter. 36, 355–373 (1984).

    Article  Google Scholar 

  54. 54

    Davaille, A. & Jaupart, C. Transient high-Rayleigh number thermal convection with large viscosity variations. J. Fluid Mech. 253, 141–166 (1993).

    Article  Google Scholar 

  55. 55

    Solomatov, S. Scaling of temperature- and stress-dependent viscosity convection. Phys. Fluids 7, 266–274 (1995).

    Article  Google Scholar 

  56. 56

    Petersen, R. I., Stegman, D. R. & Tackley, P. J. A regime diagram of mobile lid convection with plate-like behavior. Phys. Earth Planet. Inter. 241, 65–76 (2015).

    Article  Google Scholar 

  57. 57

    Fourel, L., Goes, S. & Morra, G. The role of elasticity in slab bending. Geochem. Geophys. Geosyst. 15, 4507–4525 (2014).

    Article  Google Scholar 

  58. 58

    Schmalholz, S. M. & Podladchikov, Y. Buckling versus Foldin: importance of viscoelasticity. Geophys. Res. Lett. 26, 2641–2644 (1999).

    Article  Google Scholar 

  59. 59

    Boulogne, F., Giorgutti-Dauphiné, F. & Pauchard, L. The buckling and invagination process during consolidation of colloidal droplets. Soft Matter 9, 750–757 (2014).

    Article  Google Scholar 

  60. 60

    Demouchy, S., Tommasi, A., Barou, F., Mainprice, D. & Cordier, P. Deformation of olivine in torsion under hydrous conditions. Phys. Earth Planet. Inter. 202–203, 56–70 (2012).

    Article  Google Scholar 

  61. 61

    Demouchy, S., Tommasi, A., Boffa-Ballaran, T. & Cordier, P. Low strength of Earth’s uppermost mantle inferred from tri-axial deformation experiments on dry olivine crystals. Phys. Earth Planet. Inter. 220, 37–49 (2013).

    Article  Google Scholar 

  62. 62

    Crameri, F. & Tackley, P. J. Parameters controlling dynamically self-consistent plate tectonics and single-sided subduction in global models of mantle convection. J. Geophys. Res. 120, 3680–3706 (2015).

    Article  Google Scholar 

  63. 63

    Korenaga, J. Thermal cracking and the deep hydration of oceanic lithosphere: a key to the generation of plate tectonics? J. Geophys. Res. 112, B05408 (2007).

    Article  Google Scholar 

  64. 64

    Montesi, G. J. Fabric development as the key for forming ductile shear zones and enabling plate tectonics. J. Struct. Geol. 50, 254–266 (2013).

    Article  Google Scholar 

  65. 65

    Brace, W. F. & Kohlstedt, D. L. Limits on lithospheric stress imposed by laboratory experiments. J. Geophys. Res. 85, 6248–6252 (1980).

    Article  Google Scholar 

  66. 66

    Li, Z.-H. & Ribe, N. M. Dynamics of free subduction from 3-D boundary element modeling. J. Geophys. Res. 117, B06408 (2012).

    Google Scholar 

  67. 67

    Govers, R. & Wortel, M. J. R. Lithosphere tearing at STEP faults: response to edges of subduction zones. Earth Planet. Sci. Lett. 236, 505–523 (2005).

    Article  Google Scholar 

  68. 68

    Hale, A. J. et al. Dynamics of slab tear faults: insights from numerical modelling. Tectonophysics 483, 58–70 (2010).

    Article  Google Scholar 

  69. 69

    Nijholt, N. & Govers, R. The role of passive margins on the evolution of Subduction-Transform Edge Propagators (STEPs). J. Geophys. Res. 120, 7203–7230 (2015).

    Article  Google Scholar 

  70. 70

    Gurnis, M., Zhong, S. & Toth, J. in The History and Dynamics of Global Plate Motions (eds Richards, M. A., Gordon, R. & van der Hilst, R.) 73–94 (AGU Geophysical Monograph 21, 2000).

    Book  Google Scholar 

  71. 71

    Telford, W. M., Geldart, L. P., Sheriff, R. E. & Keys, D. A. Applied Geophysics 43 (Cambridge Univ. Press, 1976).

    Google Scholar 

  72. 72

    Wieczorek, M. A. Treatise on Geophysics Vol. 10, 165–206 (Elsevier, 2007).

    Book  Google Scholar 

  73. 73

    Audet, P. Directional wavelet analysis on the sphere: application to gravity and topography of the terrestrial planets. J. Geophys. Res. 116, E01003 (2011).

    Article  Google Scholar 

  74. 74

    James, P. B., Zuber, M. T. & Phillips, R. J. Crustal thickness and support of topography on Venus. J. Geophys. Res. 118, 859–875 (2013).

    Article  Google Scholar 

Download references


Part of this research was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration. S.E.S. was supported by Jet Propulsion Laboratory internal funds, and A.D. by grants from PNP-INSU and the French ANR ‘PTECTO’ (ANR-09-BLAN-0142). A.D. is grateful for the technical support of A. Aubertin, R. Pidoux and L. Auffray.

Author information




A.D. carried out the laboratory experiments, determined the scaling laws, and proposed the geodynamical model for Venus plume-induced subduction. S.E.S. chose Venusian analogue sites and analysed image data. S.T. analysed gravity and topography data. S.E.S. and A.D. wrote the manuscript.

Corresponding author

Correspondence to A. Davaille.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5373 kb)

Supplementary Information

Supplementary Information (MOV 9485 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Davaille, A., Smrekar, S. & Tomlinson, S. Experimental and observational evidence for plume-induced subduction on Venus. Nature Geosci 10, 349–355 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing