Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electrification of sand on Titan and its influence on sediment transport

Abstract

Triboelectric, or frictional, charging is a ubiquitous yet poorly understood phenomenon in granular flows. Recognized in terrestrial volcanic plumes and sand storms, such electrification mechanisms are possibly present on Titan. There, dunes and plains of low-density organic particles blanket extensive regions of the surface. Unlike Earth, Titan hosts granular reservoirs whose physical and chemical properties possibly enhance the effects of charging on particle motion. Here we demonstrate in laboratory tumbler experiments under atmospheric conditions and using organic materials analogous to Titan that Titan sands can readily charge triboelectrically. We suggest that the resulting electrostatic forces are strong enough to promote aggregation of granular materials and affect sediment transport on Titan. Indeed, our experiments show that electrostatic forces may increase the saltation threshold for grains by up to an order of magnitude. Efficient electrification may explain puzzling observations on Titan such as the mismatch between dune orientations and inferred wind fields. We conclude that, unlike other Solar System bodies, nanometre-scale electrostatic processes may shape the geomorphological features of Titan across the moon’s surface.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Experimental apparatus.
Figure 2: Surface charge densities and charge-to-mass ratios.
Figure 3: Electrostatic-to-inertial ratio.
Figure 4: Electrostatics and the saltation threshold.

Similar content being viewed by others

References

  1. Lowell, J. & Truscott, W. S. Triboelectrification of identical insulators. I. An experimental investigation. J. Phys. Appl. Phys. 19, 1273–1280 (1986).

    Article  Google Scholar 

  2. Lowell, J. & Truscott, W. S. Triboelectrification of identical insulators. II. Theory and further experiments. J. Phys. Appl. Phys. 19, 1281–1298 (1986).

    Article  Google Scholar 

  3. Matsusaka, S., Maruyama, H., Matsuyama, T. & Ghadiri, M. Triboelectric charging of powders: a review. Chem. Eng. Sci. 65, 5781–5807 (2010).

    Article  Google Scholar 

  4. Thomas, A., Saleh, K., Guigon, P. & Czechowski, C. Characterisation of electrostatic properties of powder coatings in relation with their industrial application. Powder Technol. 190, 230–235 (2009).

    Article  Google Scholar 

  5. Lacks, D. J. & Sankaran, R. M. Contact electrification of insulating materials. J. Phys. Appl. Phys. 44, 453001 (2011).

    Article  Google Scholar 

  6. Hendrickson, G. Electrostatics and gas phase fluidized bed polymerization reactor wall sheeting. Chem. Eng. Sci. 61, 1041–1064 (2006).

    Article  Google Scholar 

  7. Telling, J., Dufek, J. & Shaikh, A. Ash aggregation in explosive volcanic eruptions. Geophys. Res. Lett. 40, 2355–2360 (2013).

    Article  Google Scholar 

  8. James, M. R., Gilbert, J. S. & Lane, S. J. Experimental investigation of volcanic particle aggregation in the absence of a liquid phase. J. Geophys. Res. 107, 2191 (2002).

    Article  Google Scholar 

  9. Kok, J. F. & Renno, N. O. Electrostatics in wind-blown sand. Phys. Rev. Lett. 100, 014501 (2008).

    Article  Google Scholar 

  10. Telling, J. & Dufek, J. An experimental evaluation of ash aggregation in explosive volcanic eruptions. J. Volcanol. Geotherm. Res. 209–210, 1–8 (2012).

    Article  Google Scholar 

  11. Lee, V., Waitukaitis, S. R., Miskin, M. Z. & Jaeger, H. M. Direct observation of particle interactions and clustering in charged granular streams. Nat. Phys. 11, 733–737 (2015).

    Article  Google Scholar 

  12. Le Gall, A. et al. Cassini SAR, radiometry, scatterometry and altimetry observations of Titan’s dune fields. Icarus 213, 608–624 (2011).

    Article  Google Scholar 

  13. Lorenz, R. D. et al. The sand seas of Titan: Cassini RADAR observations of longitudinal dunes. Science 312, 724–727 (2006).

    Article  Google Scholar 

  14. Radebaugh, J. et al. Dunes on Titan observed by Cassini Radar. Icarus 194, 690–703 (2008).

    Article  Google Scholar 

  15. Rodriguez, S. et al. Global mapping and characterization of Titan’s dune fields with Cassini: correlation between RADAR and VIMS observations. Icarus 230, 168–179 (2014).

    Article  Google Scholar 

  16. Lopes, R. M. C. et al. Nature, distribution, and origin of Titan’s undifferentiated plains. Icarus 270, 162–182 (2016).

    Article  Google Scholar 

  17. Malaska, M. J. et al. Material transport map of Titan: the fate of dunes. Icarus 270, 183–196 (2016).

    Article  Google Scholar 

  18. Soderblom, L. A. et al. Correlations between Cassini VIMS spectra and RADAR SAR images: implications for Titan’s surface composition and the character of the Huygens probe landing site. Planet. Space Sci. 55, 2025–2036 (2007).

    Article  Google Scholar 

  19. Barnes, J. W. et al. Spectroscopy, morphometry, and photoclinometry of Titan’s dunefields from Cassini/VIMS. Icarus 195, 400–414 (2008).

    Article  Google Scholar 

  20. Malaska, M. J. et al. Geomorphological map of the Afekan Crater region, Titan: terrain relationships in the equatorial and mid-latitude regions. Icarus 270, 130–161 (2016).

    Article  Google Scholar 

  21. Raizer, Y. P. Gas Discharge Physics (Springer, 2011).

    Google Scholar 

  22. Paschen, F. Ueber die zum Funkenübergang in Luft, Wasserstoff und Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz. Ann. Phys. 273, 69–96 (1889).

    Article  Google Scholar 

  23. Manning, H. L. K., ten Kate, I. L., Battel, S. J. & Mahaffy, P. R. Electric discharge in the Martian atmosphere, Paschen curves and implications for future missions. Adv. Space Res. 46, 1334–1340 (2010).

    Article  Google Scholar 

  24. Lorenz, R. D., Physics of saltation and sand transport on Titan: a brief review. Icarus 230, 162–167 (2014).

    Article  Google Scholar 

  25. Low Level Measurements Handbook 6th edn (Keithley, 2004).

  26. Galembeck, F. et al. Friction, tribochemistry and triboelectricity: recent progress and perspectives. RSC Adv. 4, 64280–64298 (2014).

    Article  Google Scholar 

  27. Greason, W. D. Investigation of a test methodology for triboelectrification. J. Electrost. 49, 245–256 (2000).

    Article  Google Scholar 

  28. Hamelin, M. et al. The electrical properties of Titan’s surface at the Huygens landing site measured with the PWA–HASI mutual impedance probe. New approach and new findings. Icarus 270, 272–290 (2016).

    Article  Google Scholar 

  29. Lorenz, R. D. & Radebaugh, J. Global pattern of Titan’s dunes: radar survey from the Cassini prime mission. Geophys. Res. Lett. 36, L03202 (2009).

    Article  Google Scholar 

  30. Tokano, T. Relevance of fast westerlies at equinox for the eastward elongation of Titan’s dunes. Aeolian Res. 2, 113–127 (2010).

    Article  Google Scholar 

  31. Lora, J. M., Lunine, J. I. & Russell, J. L. GCM simulations of Titan’s middle and lower atmosphere and comparison to observations. Icarus 250, 516–528 (2015).

    Article  Google Scholar 

  32. Lucas, A. et al. Growth mechanisms and dune orientation on Titan. Geophys. Res. Lett. 41, 6093–6100 (2014).

    Article  Google Scholar 

  33. Charnay, B. et al. Methane storms as a driver of Titan’s dune orientation. Nat. Geosci. 8, 362–366 (2015).

    Article  Google Scholar 

  34. McDonald, G. D. et al. Variations in Titan’s dune orientations as a result of orbital forcing. Icarus 270, 197–210 (2016).

    Article  Google Scholar 

  35. Burr, D. M. et al. Higher-than-predicted saltation threshold wind speeds on Titan. Nature 517, 60–63 (2015).

    Article  Google Scholar 

  36. Rubin, D. M. & Hesp, P. A. Multiple origins of linear dunes on Earth and Titan. Nat. Geosci. 2, 653–658 (2009).

    Article  Google Scholar 

  37. Iversen, J. D. & White, B. R. Saltation threshold on Earth, Mars and Venus. Sedimentology 29, 111–119 (1982).

    Article  Google Scholar 

  38. Waite, J. H. et al. The process of tholin formation in Titan’s upper atmosphere. Science 316, 870–875 (2007).

    Article  Google Scholar 

  39. Delitsky, M. L. & McKay, C. P. The photochemical products of benzene in Titan’s upper atmosphere. Icarus 207, 477–484 (2010).

    Article  Google Scholar 

  40. Shao, Y. & Lu, H. A simple expression for wind erosion threshold friction velocity. J. Geophys. Res. 105, 22437–22443 (2000).

    Article  Google Scholar 

  41. Méndez Harper, J. & Dufek, J. The effects of dynamics on the triboelectrification of volcanic ash. J. Geophys. Res. 121, 8209–8228 (2016).

    Google Scholar 

  42. Bo, T.-L., Zhang, H. & Zheng, X.-J. Charge-to-mass ratio of saltating particles in wind-blown sand. Sci. Rep. 4, 5590 (2014).

    Article  Google Scholar 

  43. Bichoutskaia, E., Boatwright, A. L., Khachatourian, A. & Stace, A. J. Electrostatic analysis of the interactions between charged particles of dielectric materials. J. Chem. Phys. 133, 024105 (2010).

    Article  Google Scholar 

  44. Castellanos, A. The relationship between attractive interparticle forces and bulk behaviour in dry and uncharged fine powders. Adv. Phys. 54, 263–376 (2005).

    Article  Google Scholar 

  45. Grzybowski, B. A., Winkleman, A., Wiles, J. A., Brumer, Y. & Whitesides, G. M. Electrostatic self-assembly of macroscopic crystals using contact electrification. Nat. Mater. 2, 241–245 (2003).

    Article  Google Scholar 

  46. du Pont, S. C., Narteau, C. & Gao, X. Two modes for dune orientation. Geology 42, 743–746 (2014).

    Article  Google Scholar 

  47. Gao, X., Narteau, C. & Rozier, O. Controls on and effects of armoring and vertical sorting in aeolian dune fields: a numerical simulation study. Geophys. Res. Lett. 43, GL068416 (2016).

    Google Scholar 

  48. Lucas, A. et al. Sediment flux from the morphodynamics of elongating linear dunes. Geology 43, 1027–1030 (2015).

    Article  Google Scholar 

  49. Sowinski, A., Miller, L. & Mehrani, P. Investigation of electrostatic charge distribution in gas–solid fluidized beds. Chem. Eng. Sci. 65, 2771–2781 (2010).

    Article  Google Scholar 

  50. Bonnefoy, L. E. et al. Compositional and spatial variations in Titan dune and interdune regions from Cassini VIMS and RADAR. Icarus 270, 222–237 (2016).

    Article  Google Scholar 

  51. Niemann, H. B. et al. Composition of Titan’s lower atmosphere and simple surface volatiles as measured by the Cassini-Huygens probe gas chromatograph mass spectrometer experiment. J. Geophys. Res. 115, E12006 (2010).

    Article  Google Scholar 

  52. Lacks, D. J. & Levandovsky, A. Effect of particle size distribution on the polarity of triboelectric charging in granular insulator systems. J. Electrost. 65, 107–112 (2007).

    Article  Google Scholar 

  53. Forward, K. M., Lacks, D. J. & Sankaran, R. M. Charge segregation depends on particle size in triboelectrically charged granular materials. Phys. Rev. Lett. 102, 028001 (2009).

    Article  Google Scholar 

  54. Méndez Harper, J., Dufek, J. & McAdams, J. The electrification of volcanic particles during the brittle fragmentation of the magma column. In Proc ESA Annu. Meet. Electrost. 2015 (Electrostatics Society of America, 2015).

    Google Scholar 

  55. Dickinson, J. T. et al. Fractoemission from fused silica and sodium silicate glasses. J. Vac. Sci. Technol. A 6, 1084–1089 (1988).

    Article  Google Scholar 

  56. Stace, A. J., Boatwright, A. L., Khachatourian, A. & Bichoutskaia, E. Why like-charged particles of dielectric materials can be attracted to one another. J. Colloid Interface Sci. 354, 417–420 (2011).

    Article  Google Scholar 

Download references

Acknowledgements

J.S.M.H. acknowledges funding from the NSF through an GRFP Fellowship. G.D.M. acknowledges funding from the DoD through an NDSEG Fellowship. Additional funding was provided by grant NSF EAR 1150794.

Author information

Authors and Affiliations

Authors

Contributions

J.S.M.H. designed experimental apparatus and measurement electronics, conducted experiments, and performed analysis. G.D.M. conducted experiments and helped with analysis. J.D. provided support with theoretical models of grain motion. M.J.M. provided support regarding material selection. D.M.B. provided support regarding aeolian dynamics on Titan. A.G.H. provided initial conceptualization of the project. J.M. provided laboratory support and conducted experiments. J.J.W. provided support regarding remote sensing.

Corresponding author

Correspondence to J. S. Méndez Harper.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 531 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Méndez Harper, J., McDonald, G., Dufek, J. et al. Electrification of sand on Titan and its influence on sediment transport. Nature Geosci 10, 260–265 (2017). https://doi.org/10.1038/ngeo2921

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2921

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing