Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Formation of recurring slope lineae on Mars by rarefied gas-triggered granular flows

Abstract

Active dark flows known as recurring slope lineae have been observed on the warmest slopes of equatorial Mars. The morphology, composition and seasonality of the lineae suggest a role of liquid water in their formation. However, internal and atmospheric sources of water appear to be insufficient to sustain the observed slope activity. Experimental evidence suggests that under the low atmospheric pressure at the surface of Mars, gas can flow upwards through porous Martian soil due to thermal creep under surface regions heated by the Sun, and disturb small particles. Here we present numerical simulations to demonstrate that such a dry process involving the pumping of rarefied gas in the Martian soil due to temperature contrasts can explain the formation of the recurring slope lineae. In our simulations, solar irradiation followed by shadow significantly reduces the angle of repose due to the resulting temporary temperature gradients over shaded terrain, and leads to flow at intermediate slope angles. The simulated flow locations are consistent with observed recurring slope lineae that initiate in rough and bouldered terrains with local shadows over the soil. We suggest that this dry avalanche process can explain the formation of the recurring slope lineae on Mars without requiring liquid water or CO2 frost activity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of RSL at Garni Crater, Valles Marineris, Mars.
Figure 2: Knudsen pump in the Martian soil.
Figure 3: Angle of repose, modified by the Knudsen pump as a function of slope aspect (expressed as the clockwise angle from the north) and season (expressed in Ls).

Similar content being viewed by others

References

  1. McEwen, A. S. et al. Seasonal flows on warm Martian slopes. Science 333, 740–743 (2011).

    Article  Google Scholar 

  2. McEwen, A. S. et al. Recurring slope lineae in equatorial regions of Mars. Nat. Geosci. 7, 53–58 (2014).

    Article  Google Scholar 

  3. Chojnacki, M. et al. Geologic context of recurring slope lineae in melas and coprates chasmata, Mars. J. Geophys. Res. 121, 1204–1231 (2016).

    Article  Google Scholar 

  4. Ojha, L. et al. Spectral evidence for hydrated salts in recurring slope lineae on Mars. Nat. Geosci. 8, 829–832 (2015).

    Article  Google Scholar 

  5. Massé, M. et al. Transport processes induced by metastable boiling water under Martian surface conditions. Nat. Geosci. 9, 425–428 (2016).

    Article  Google Scholar 

  6. Smith, M. D. The annual cycle of water vapor on Mars as observed by the Thermal Emission Spectrometer. J. Geophys. Res. 107, 5115 (2002).

    Google Scholar 

  7. Vincendon, M., Forget, F. & Mustard, J. Water ice at low to midlatitudes on Mars. J. Geophys. Res. 115, E10001 (2010).

    Article  Google Scholar 

  8. Schorghofer, N. Dynamics of ice ages on Mars. Nature 449, 192–194 (2007).

    Article  Google Scholar 

  9. Vincendon, M. et al. Near-tropical subsurface ice on Mars. Geophys. Res. Lett. 37, L01202 (2010).

    Article  Google Scholar 

  10. Edwards, C. S. & Piqueux, S. The water content of recurring slope lineae on Mars. Geophys. Res. Lett. 43, 8912–8919 (2016).

    Article  Google Scholar 

  11. Piqueux, S. et al. Discovery of a widespread low-latitude diurnal CO2 frost cycle on Mars. J. Geophys. Res. 121, 1174–1189 (2016).

    Article  Google Scholar 

  12. Shinbrot, T., Duong, N.-H., Kwan, L. & Alvarez, M. M. Dry granular flows can generate surface features resembling those seen in Martian gullies. Proc. Natl Acad. Sci. USA 101, 8542–8546 (2004).

    Article  Google Scholar 

  13. Mangold, N., Mangeney, A. & Bouchut, F. Workshop on Martian Gullies Vol. 1303, 70–71 (LPI Contributions, 2008).

    Google Scholar 

  14. Félix, G. & Thomas, N. Relation between dry granular flow regimes and morphology of deposits: formation of levées in pyroclastic deposits. Earth Planet. Sci. Lett. 221, 197–213 (2004).

    Article  Google Scholar 

  15. Costard, F., Mangold, N., Baratoux, D. & Forget, F. Seventh International Conference on Mars Vol. 1353, 3133 (LPI Contributions, 2007).

    Google Scholar 

  16. Legros, F. Can dispersive pressure cause inverse grading in grain flows? J. Sedim. Res. 72, 166–170 (2002).

    Article  Google Scholar 

  17. Armanini, A. Granular flows driven by gravity. J. Hydraul. Res. 51, 111–120 (2013).

    Article  Google Scholar 

  18. Kokelaar, B., Graham, R., Gray, J. & Vallance, J. Fine-grained linings of leveed channels facilitate runout of granular flows. Earth Planet. Sci. Lett. 385, 172–180 (2014).

    Article  Google Scholar 

  19. Wurm, G. & Krauss, O. Dust eruptions by photophoresis and solid state greenhouse effects. Phys. Rev. Lett. 96, 134301 (2006).

    Article  Google Scholar 

  20. Kelling, T., Wurm, G., Kocifaj, M., Klačka, J. & Reiss, D. Dust ejection from planetary bodies by temperature gradients: laboratory experiments. Icarus 212, 935–940 (2011).

    Article  Google Scholar 

  21. Wurm, G., Teiser, J. & Reiss, D. Greenhouse and thermophoretic effects in dust layers: the missing link for lifting of dust on Mars. Geophys. Res. Lett. 35, 10201 (2008).

    Article  Google Scholar 

  22. de Beule, C. et al. The Martian soil as a planetary gas pump. Nat. Phys. 10, 17–20 (2013).

    Article  Google Scholar 

  23. Küpper, M. et al. Photophoresis on polydisperse basalt microparticles under microgravity. J. Aerosol Sci. 76, 126–137 (2014).

    Article  Google Scholar 

  24. Kocifaj, M., Klačka, J., Wurm, G., Kelling, T. & Kohút, I. Dust ejection from (pre-)planetary bodies by temperature gradients: radiative and heat transfer. Mon. Not. R. Astron. Soc. 404, 1512–1518 (2014).

    Google Scholar 

  25. Kocifaj, M., Klačka, J., Kelling, T. & Wurm, G. Radiative cooling within illuminated layers of dust on (pre)-planetary surfaces and its effect on dust ejection. Icarus 211, 832–838 (2011).

    Article  Google Scholar 

  26. de Beule, C., Wurm, G., Kelling, T., Koester, M. & Kocifaj, M. An insolation activated dust layer on Mars. Icarus 260, 23–28 (2015).

    Article  Google Scholar 

  27. Küpper, M. & Wurm, G. Thermal creep-assisted dust lifting on Mars: wind tunnel experiments for the entrainment threshold velocity. J. Geophys. Res. 120, 1346–1356 (2015).

    Article  Google Scholar 

  28. Kuepper, M. & Wurm, G. Amplification of dust loading in Martian dust devils by self-shadowing. Icarus 274, 249–252 (2016).

    Article  Google Scholar 

  29. Schorghofer, N. Planetary science: subsurface air flow on Mars. Nat. Phys. 10, 14–15 (2014).

    Article  Google Scholar 

  30. Lewis, S. R. et al. A climate database for Mars. J. Geophys. Res. 104, 24177–24194 (1999).

    Article  Google Scholar 

  31. Spiga, A. & Forget, F. Fast and accurate estimation of solar irradiance on Martian slopes. Geophys. Res. Lett. 35, 15201 (2008).

    Article  Google Scholar 

  32. Pouliquen, O. Scaling laws in granular flows down rough inclined planes. Phys. Fluids 11, 542 (1999).

    Article  Google Scholar 

  33. Schmidt, F. et al. Albedo control of seasonal South Polar Cap recession on Mars. Icarus 200, 374–394 (2009).

    Article  Google Scholar 

  34. Forget, F. et al. Improved general circulation models of the Martian atmosphere from the surface to above 80 km. J. Geophys. Res. 104, 24155–24176 (1999).

    Article  Google Scholar 

  35. Millour, E. et al. (MCD/GCM development team) The Mars Climate Database (MCD version 5.2) EPSC2015-438 (European Planetary Science Congress, 2015).

  36. Smith, M. D., Pearl, J. C., Conrath, B. J. & Christensen, P. R. Thermal Emission Spectrometer results: Mars atmospheric thermal structure and aerosol distribution. J. Geophys. Res. 106, 23929–23945 (2001).

    Article  Google Scholar 

  37. Ockert-Bell, M. E., Bell, J. F., Pollack, J. B., McKay, C. P. & Forget, F. Absorption and scattering properties of the Martian dust in the solar wavelengths. J. Geophys. Res. 102, 9039–9050 (1997).

    Article  Google Scholar 

  38. Pollack, J. B., Toon, O. B. & Khare, B. N. Optical properties of some terrestrial rocks and glasses. Icarus 19, 372–389 (1973).

    Article  Google Scholar 

  39. Wolff, M. J. et al. Wavelength dependence of dust aerosol single scattering albedo as observed by the Compact Reconnaissance Imaging Spectrometer. J. Geophys. Res. 114, E00D04 (2009).

    Article  Google Scholar 

  40. Han, Y.-L. Investigation of Micro/Meso-Scale Knudsen Compressors at Low Pressures PhD thesis, Univ. Southern California (2006).

  41. Sone, Y. & Itakura, E. Analysis of Poiseuille and thermal transpiration flows for arbitrary Knudsen numbers by a modified Knudsen number expansion method and their database. J. Vac. Soc. Japan 33, 92–94 (1990).

    Article  Google Scholar 

  42. Mangeney, A., Bouchut, F., Thomas, N., Vilotte, J. P. & Bristeau, M. O. Numerical modeling of self-channeling granular flows and of their levee-channel deposits. J. Geophys. Res. 112, F02017 (2007).

    Article  Google Scholar 

  43. Pouliquen, O. & Forterre, Y. Friction law for dense granular flows: application to the motion of a mass down a rough inclined plane. J. Fluid Mech. 453, 133–151 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge support from the ‘Institut National des Sciences de l’Univers’ (INSU), the ‘Centre National de la Recherche Scientifique’ (CNRS) and ‘Centre National d’Etude Spatiale’ (CNES) through the ‘Programme National de Planétologie’, HRSC/MEX, OMEGA/MEX and PFS/MEX programmes. Computational work was supported by the Slovak Research and Development Agency under contract No. APVV-14-0017. This work is supported by the Center for Data Science, funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-02. We thank S. Piqueux for fruitful remarks.

Author information

Authors and Affiliations

Authors

Contributions

F.S. led the project. F.A. was in charge of the angle of repose theory. F.C. interpreted the RSL geomorphology. M.K., A.G.M. and F.S. adapted the thermal profile calculation. All co-authors contributed to the analysis of the results and the redaction of the article.

Corresponding author

Correspondence to Frédéric Schmidt.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 5733 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schmidt, F., Andrieu, F., Costard, F. et al. Formation of recurring slope lineae on Mars by rarefied gas-triggered granular flows. Nature Geosci 10, 270–273 (2017). https://doi.org/10.1038/ngeo2917

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2917

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing