Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen

An Author Correction to this article was published on 24 December 2020

This article has been updated

Abstract

The Trans-Hudson orogen of North America is a circa 1,800 million year old, middle Palaeoproterozoic continental collisional belt. The orogen may represent an ancient analogue to the Himalayan orogen, which began forming 50 million years ago and remains active today. Both mountain belts exhibit similar length scales of deformation and timescales of magmatism and metamorphism. A notable divergence in this correlation has been the absence of high-pressure, low-temperature metamorphic rocks in the Trans-Hudson compared with the Himalaya. It has been debated whether this absence reflects a secular tectonic change, with the requisite cool thermal gradients precluded by warmer ambient mantle temperatures during the Palaeoproterozoic, or a lack of preservation. Here we identify eclogite rocks within the Trans-Hudson orogen. These rocks, which typically form at high pressures and cool temperatures during subduction, fill the gap in the comparative geologic record between the Trans-Hudson and Himalayan orogens. Through the application of phase equilibria modelling and in situ U–Pb monazite dating we show that the pressure–temperature conditions and relative timing of eclogite-facies metamorphism are comparable in both orogenies. The results imply that modern-day plate tectonic processes featuring deep continental subduction occurred at least 1,830 million years ago. This study highlights that the global metamorphic rock record (particularly in older terrains) is skewed by overprinting and erosion.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Tectonic maps of the Palaeoproterozoic Trans-Hudson orogen and the Cenozoic Himalayan orogen showing their similar scale and orogenic architecture11.
Figure 2: Trans-Hudson eclogite geologic context.
Figure 3: PT phase diagrams.
Figure 4: M85A monazite geochronology results.
Figure 5: PT results for the Palaeoproterozoic Trans-Hudson eclogite (red data) and relative correspondence with the Cenozoic Tso Morari eclogite (blue data).
Figure 6: Results of this study with respect to a global compilation20 of metamorphic PTt data.

Similar content being viewed by others

Change history

References

  1. Bédard, J. H., Harris, L. B. & Thurston, P. C. The hunting of the snArc. Precambrian Res. 229, 20–48 (2013).

    Article  Google Scholar 

  2. Polat, A. et al. The origin and compositions of Mesoarchean oceanic crust: evidence from the 3075 Ma Ivisaartoq greenstone belt, SW Greenland. Lithos 100, 293–321 (2008).

    Article  Google Scholar 

  3. Brown, M. Duality of thermal regimes is the distinctive characteristic of plate tectonics since the Neoarchean. Geology 34, 961–964 (2006).

    Article  Google Scholar 

  4. Stern, R. J. Evidence from ophiolites, blueschists, and ultrahigh-pressure metamorphic terranes that the modern episode of subduction tectonics began in Neoproterozoic time. Geology 33, 557–560 (2005).

    Article  Google Scholar 

  5. Brown, M. Metamorphic conditions in orogenic belts: a record of secular change. Int. Geol. Rev. 49, 193–234 (2007).

    Article  Google Scholar 

  6. Hoffman, P. F. United plates of America, the birth of a craton: early Proterozoic assembly and growth of Laurentia. Annu. Rev. Earth Planet. Sci. 16, 543–603 (1988).

    Article  Google Scholar 

  7. Lewry, J. & Stauffer, M. The Early Proterozoic Trans-Hudson Orogen of North America (Geological Association of Canada, Special Paper 37, 1990).

    Google Scholar 

  8. Corrigan, D., Pehrsson, S., Wodicka, N. & de Kemp, E. The Palaeoproterozoic Trans-Hudson orogen: a prototype of modern accretionary processes. Geol. Soc. Lond. Spec. Pub. 327, 457–479 (2009).

    Google Scholar 

  9. St-Onge, M. R., Van Gool, J. A. M., Garde, A. A. & Scott, D. J. Correlation of Archaean and Palaeoproterozoic units between northeastern Canada and western Greenland: constraining the pre-collisional upper plate accretionary history of the Trans-Hudson orogen. Geol. Soc. Lond. Spec. Pub. 318, 193–235 (2009).

    Article  Google Scholar 

  10. Green, O., Searle, M. P., Corfield, R. I. & Corfield, R. M. Cretaceous-Tertiary carbonate platform evolution and the age of the India-Asia collision along the Ladakh Himalaya (northwest India). J. Geol. 116, 331–353 (2008).

    Google Scholar 

  11. St-Onge, M. R., Searle, M. P. & Wodicka, N. Trans-Hudson orogen of North America and Himalaya-Karakoram-Tibetan orogen of Asia: structural and thermal characteristics of the lower and upper plates. Tectonics 25, 1–22 (2006).

    Article  Google Scholar 

  12. Eaton, D. W. & Darbyshire, F. Lithospheric architecture and tectonic evolution of the Hudson Bay region. Tectonophysics 480, 1–22 (2010).

    Article  Google Scholar 

  13. Thompson, D. A. et al. Precambrian crustal evolution: seismic constraints from the Canadian Shield. Earth Planet. Sci. Lett. 297, 655–666 (2010).

    Article  Google Scholar 

  14. Bastow, I. D. et al. Precambrian plate tectonics: seismic evidence from northern Hudson Bay, Canada. Geology 39, 91–94 (2011).

    Article  Google Scholar 

  15. Corrigan, D. in Tectonic Styles in Canada: The LITHOPROBE Perspective (eds Percival, J. A., Cook, F. & Clowes, R.) Ch. 4, 237–284 (Geological Association of Canada, Special Paper 49, 2012).

    Google Scholar 

  16. Parrish, R. R., Gough, S., Searle, M. P. & Waters, D. J. Plate velocity exhumation of ultrahigh-pressure eclogites in the Pakistan Himalaya. Geology 34, 989–992 (2006).

    Article  Google Scholar 

  17. Lanari, P. et al. Deciphering high-pressure metamorphism in collisional context using microprobe mapping methods: application to the Stak eclogitic massif (northwest Himalaya). Geology 41, 111–114 (2013).

    Article  Google Scholar 

  18. St-Onge, M. R., Rayner, N., Palin, R. M., Searle, M. P. & Waters, D. J. Integrated pressure–temperature–time constraints for the Tso Morari dome (northwest India): implications for the burial and exhumation path of UHP units in the western Himalaya. J. Metamorph. Geol. 31, 469–504 (2013).

    Article  Google Scholar 

  19. Brown, M. in When did Plate Tectonics Begin on Planet Earth? (eds Condie, K. C. & Pease, V.) 97–128 (Geological Society of America, Special Paper 440, 2008).

    Book  Google Scholar 

  20. Brown, M. The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geosci. Front. 5, 553–569 (2014).

    Article  Google Scholar 

  21. St-Onge, M. R. & Ijewliw, O. J. Mineral corona formation during high-P retrogression of granulitic rocks, Ungava orogen, Canada. J. Petrol. 37, 553–582 (1996).

    Article  Google Scholar 

  22. Lucas, S. B. Structural evolution of the Cape Smith thrust belt and the role of out-of-sequence faulting in the thickening of mountain belts. Tectonics 8, 655–676 (1989).

    Article  Google Scholar 

  23. St-Onge, M. R. & Lucas, S. B. Large-scale fluid infiltration, metasomatism and re-equilibration of Archaean basement granulites during Palaeoproterozoic thrust belt construction, Ungava orogen, Canada. J. Metamorph. Geol. 13, 509–535 (1995).

    Article  Google Scholar 

  24. Skipton, D., Schneider, D., Kellett, D. & Joyce, N. New Insights on the Cooling History of Hall Peninsula, Southern Baffin Island, Nunavut, using Ar Thermochronology on Muscovite 17–30 (Canada-Nunavut Geoscience Office, 2015).

    Google Scholar 

  25. Buchan, K. L., Mortensen, J. K., Card, K. D. & Percival, J. A. Paleomagnetism and U–Pb geochronology of diabase dyke swarms of Minto block, Superior Province, Quebec, Canada. Can. J. Earth Sci. 35, 1054–1069 (1998).

    Article  Google Scholar 

  26. Kohn, M. J. & Spear, F. S. Retrograde net transfer reaction insurance for pressure–temperature estimates. Geology 28, 1127–1130 (2000).

    Article  Google Scholar 

  27. Caddick, M. J., Konopasek, J. & Thompson, A. B. Preservation of garnet growth zoning and the duration of prograde metamorphism. J. Petrol. 51, 2327–2347 (2010).

    Article  Google Scholar 

  28. Palin, R., St-Onge, M., Waters, D., Searle, M. & Dyck, B. Phase equilibria modelling of retrograde amphibole and clinozoisite in mafic eclogite from the Tso Morari massif, northwest India: constraining the PTM(H2O) conditions of exhumation. J. Metamorph. Geol. 32, 675–693 (2014).

    Article  Google Scholar 

  29. Baldwin, J. A., Powell, R., White, R. W. & Štípská, P. Using calculated chemical potential relationships to account for replacement of kyanite by symplectite in high pressure granulites. J. Metamorph. Geol. 33, 311–330 (2015).

    Article  Google Scholar 

  30. Bingen, B., Austrheim, H. & Whitehouse, M. Ilmenite as a source for zirconium during high-grade metamorphism? Textural evidence from the Caledonides of western Norway and implications for zircon geochronology. J. Petrol. 42, 355–375 (2001).

    Article  Google Scholar 

  31. Weller, O. M. et al. U–Pb zircon geochronology and phase equilibria modelling of a mafic eclogite from the Sumdo complex of south-east Tibet: insights into prograde zircon growth and the assembly of the Tibetan plateau. Lithos 262, 729–741 (2016).

    Article  Google Scholar 

  32. Skinner, B. J., Clark, S. P. & Appleman, D. E. Molar volumes and thermal expansions of andalusite, kyanite, and sillimanite. Am. J. Sci. 259, 651–668 (1961).

    Article  Google Scholar 

  33. Zhang, R. Y., Liou, J. G., Zheng, Y. F. & Fu, B. Transition of UHP eclogites to gneissic rocks of low-amphibolite facies during exhumation: evidence from the Dabie terrane, central China. Lithos 70, 269–291 (2003).

    Article  Google Scholar 

  34. Powell, R., Guiraud, M. & White, R. W. Truth and beauty in metamorphic phase-equilibria: conjugate variables and phase diagrams. Can. Mineral. 43, 21–33 (2005).

    Article  Google Scholar 

  35. Palin, R. M., Weller, O. M., Waters, D. J. & Dyck, B. Quantifying geological uncertainty in metamorphic phase equilibria modelling; a Monte Carlo assessment and implications for tectonic interpretations. Geosci. Front. 7, 591–607 (2016).

    Article  Google Scholar 

  36. Ferry, J. M. & Watson, E. B. New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers. Contrib. Mineral. Petrol. 154, 429–437 (2007).

    Article  Google Scholar 

  37. Tomkins, H. S., Powell, R. & Ellis, D. J. The pressure dependence of the zirconium-in-rutile thermometer. J. Metamorph. Geol. 25, 703–713 (2007).

    Article  Google Scholar 

  38. Clarke, G. L., Powell, R. & Fitzherbert, J. A. The lawsonite paradox: a comparison of field evidence and mineral equilibria modelling. J. Metamorph. Geol. 24, 715–725 (2006).

    Article  Google Scholar 

  39. Guiraud, M., Powell, R. & Rebay, G. H2O in metamorphism and unexpected behaviour in the preservation of metamorphic mineral assemblages. J. Metamorph. Geol. 19, 445–454 (2001).

    Article  Google Scholar 

  40. Scott, D. J. & St-Onge, M. R. Constraints on Pb closure temperature in titanite based on rocks from the Ungava orogen, Canada: implications for U–Pb geochronology and P-T-t path determinations. Geology 23, 1123–1126 (1995).

    Article  Google Scholar 

  41. Wilke, F. D., O’Brien, P. J., Schmidt, A. & Ziemann, M. A. Subduction, peak and multi-stage exhumation metamorphism: traces from one coesite-bearing eclogite, Tso Morari, western Himalaya. Lithos 231, 77–91 (2015).

    Article  Google Scholar 

  42. Cartigny, P., Chinn, I., Viljoen, K. S. & Robinson, D. Early Proterozoic ultrahigh pressure metamorphism: evidence from microdiamonds. Science 304, 853–855 (2004).

    Article  Google Scholar 

  43. Peacock, S. M. in Inside the Subduction Factory Vol. 138 (ed. Eiler, J.) 7–22 (American Geophysical Union, 2004).

    Google Scholar 

  44. Glassley, W. E., Korstgard, J. A., Storensen, K. & Platou, S. W. A new UHP metamorphic complex in the 1.8 Ga Nagssugtoqidian orogen of west Greenland. Am. Mineral. 99, 1315–1334 (2014).

    Article  Google Scholar 

  45. Morgunova, A. & Perchuk, A. Ultrahigh-pressure metamorphism in the Archean–Proterozoic Mobile Belt (Gridino Complex, Karelia, Russia). Dokl. Earth Sci. 443, 412–416 (2012).

    Article  Google Scholar 

  46. Kaulina, T. V., Yapaskurt, V. O., Presnyakov, S. L., Savchenko, E. E. & Simakin, S. G. Metamorphic evolution of the Archean eclogite-like rocks of the Shirokaya and Uzkaya Salma area (Kola Peninsula): geochemical features of zircon, composition of inclusions, and age. Geochem. Int. 48, 871–890 (2010).

    Article  Google Scholar 

  47. Moller, A., Appel, P., Mezger, K. & Schenk, V. Evidence for a 2 Ga subduction zone: eclogites in the Usagaran belt of Tanzania. Geology 23, 1067–1070 (1995).

    Article  Google Scholar 

  48. Baldwin, J. A., Powell, R., Williams, M. L. & Goncalves, P. Formation of eclogite, and reaction during exhumation to mid-crustal levels, Snowbird tectonic zone, western Canadian shield. J. Metamorph. Geol. 25, 953–974 (2007).

    Article  Google Scholar 

  49. Mints, M. V. et al. Mesoarchean subduction processes: 2.87 Ga eclogites from the Kola Peninsula, Russia. Geology 38, 739–742 (2010).

    Article  Google Scholar 

  50. Ganne, J. et al. Modern-style plate subduction preserved in the Palaeoproterozoic West African craton. Nat. Geosci. 5, 60–65 (2012).

    Article  Google Scholar 

  51. Roduit, N. JMicroVision: Image Analysis Toolbox for Measuring and Quantifying Components of High-Definition Images Version 1.2.8 (2010); http://www.jmicrovision.com

  52. Pouchou, J.-L. & Pichoir, F. in Electron Probe Quantification (eds Heinrich, K. & Newbury, D.) 31–75 (Plenum, 1991).

    Book  Google Scholar 

  53. Holland, T. J. B. AX: A Program to Calculate Activities of Mineral End-Members from Chemical Analyses (2009); http://www.esc.cam.ac.uk/research/research-groups/research-projects/tim-hollands-software-pages/ax

  54. Whitney, D. L. & Evans, B. W. Abbreviations for names of rock-forming minerals. Am. Mineral. 95, 185–187 (2010).

    Article  Google Scholar 

  55. Cabri, L. & Jackson, S. New developments in characterization of sulphide refractory Au ores. In MetSoc World Gold 2011 50th Conf. Metallurgists 51–62 (MetSoc, 2011).

    Google Scholar 

  56. Guillong, M., Hametner, K., Reusser, E., Wilson, S. a. & Günther, D. Preliminary characterisation of new glass reference materials (GSA-1G, GSC-1G, GSD-1G and GSE-1G) by laser ablation-inductively coupled plasma-mass spectrometry using 193 nm, 213 nm and 266 nm wavelengths. Geostand. Geoanal. Res. 29, 315–331 (2005).

    Article  Google Scholar 

  57. Griffin, W. L., Powell, W. L., Pearson, N. J. & O’Reilly, S. Y. in Laser Ablation-ICP Mass Spectrometry in the Earth Sciences: Current Practises and Outstanding Issues (ed. Sylvester, P.) 308–311 (Mineralogical Association of Canada, 2008).

    Google Scholar 

  58. Jochum, K. P. et al. GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand. Geoanal. Res. 29, 333–338 (2005).

    Article  Google Scholar 

  59. Powell, R. & Holland, T. J. B. An internally consistent dataset with uncertainties and correlations: 3. Applications to geobarometry, worked examples and a computer program. J. Metamorph. Geol. 6, 173–204 (1988).

    Article  Google Scholar 

  60. Holland, T. J. B. & Powell, R. An internally consistent thermodynamic data set for phases of petrological interest. J. Metamorph. Geol. 16, 309–343 (1998).

    Article  Google Scholar 

  61. White, R. W., Pomroy, N. E. & Powell, R. An in situ metatexite-diatexite transition in upper amphibolite facies rocks from Broken Hill, Australia. J. Metamorph. Geol. 23, 579–602 (2005).

    Article  Google Scholar 

  62. Holland, T., Baker, J. & Powell, R. Mixing properties and activity–composition relationships of chlorites in the system MgO–FeO–Al2O3–SiO2–H2O. Eur. J. Mineral. 10, 395–406 (1998).

    Google Scholar 

  63. Diener, J. F. A. & Powell, R. Revised activity–composition models for clinopyroxene and amphibole. J. Metamorph. Geol. 30, 131–142 (2012).

    Article  Google Scholar 

  64. White, R. W., Powell, R., Holland, T. J. B. & Worley, B. A. The effect of TiO2 and Fe2O3 on metapelitic assemblages at greenschist and amphibolite facies conditions: mineral equilibria calculations in the system K2O–FeO–MgO–Al2O3–SiO2–H2O–TiO2–Fe2O3 . J. Metamorph. Geol. 18, 497–511 (2000).

    Article  Google Scholar 

  65. Holland, T. J. B. & Powell, R. Activity–composition relations for phases in petrological calculations: an asymmetric multicomponent formulation. Contrib. Mineral. Petrol. 145, 492–501 (2003).

    Article  Google Scholar 

  66. Coggon, R. & Holland, T. J. B. Mixing properties of phengitic micas and revised garnet–phengite thermobarometers. J. Metamorph. Geol. 20, 683–696 (2002).

    Article  Google Scholar 

  67. Weller, O. M. et al. Quantifying Barrovian metamorphism in the Danba structural culmination of eastern Tibet. J. Metamorph. Geol. 31, 909–935 (2013).

    Article  Google Scholar 

  68. White, R. W., Powell, R. & Holland, T. J. B. Progress relating to calculation of partial melting equilibria for metapelites. J. Metamorph. Geol. 25, 511–527 (2007).

    Article  Google Scholar 

  69. Rayner, N. M. & Stern, R. A. Improved Sample Preparation Method for SHRIMP Analysis of Delicate Mineral Grains Exposed in Thin Sections Radiogenic Age and Isotopic Studies Report 15, Current Research 2002-F10 (Geological Survey of Canada, 2002).

    Google Scholar 

  70. Stern, R. A. & Berman, R. G. Monazite U–Pb and Th–Pb geochronology by ion microprobe, with an application to in situ dating of an Archean metasedimentary rock. Chem. Geol. 172, 113–130 (2000).

    Article  Google Scholar 

  71. Ludwig, K. User’s Manual for Isoplot/Ex rev. 3.00: a Geochronological Toolkit for Microsoft Excel (Berkeley Geochronology Center, 2003).

    Google Scholar 

  72. Mattinson, J. M. U–Pb ages of zircons: a basic examination of error propagation. Chem. Geol. 66, 151–162 (1987).

    Google Scholar 

  73. Schoene, B. in Treatise on Geochemistry Vol. 4 2nd edn (eds Holland, H.& Turekian, K.) 341–378 (2014).

    Book  Google Scholar 

Download references

Acknowledgements

The following GSC staff are thanked for technical support: P. Hunt, S. Jackson, T. Pestaj, D. Regis, K. Venance and Z. Yang. N. Rayner is particularly thanked for assistance with the geochronology and early manuscript comments. Thanks to C. Warren for critiques that significantly improved the clarity of this study. This is Earth Sciences Sector contribution no. 20160107.

Author information

Authors and Affiliations

Authors

Contributions

O.M.W. collected data, performed the calculations and wrote the paper; M.R.S.-O. conceived the idea, collected data and conducted the fieldwork. Both authors analysed the data.

Corresponding author

Correspondence to O. M. Weller.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 23995 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weller, O., St-Onge, M. Record of modern-style plate tectonics in the Palaeoproterozoic Trans-Hudson orogen. Nature Geosci 10, 305–311 (2017). https://doi.org/10.1038/ngeo2904

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2904

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing