Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation

Abstract

The terrestrial water and carbon cycles are coupled through plant regulation of stomatal closure. Both soil moisture and vapour pressure deficit—the amount of moisture in the air relative to its potential maximum—can govern stomatal closure, which reduces plant carbon uptake. However, plants vary in the degree to which they regulate their stomata—and in association, xylem conductance—in response to increasing aridity: isohydric plants exert tight regulation of stomata and the water content of the plant, whereas anisohydric plants do not. Here we use remote-sensing data sets of anisohydricity and vegetation greenness to show that productivity in United States grasslands—especially anisohydric ones—is far more sensitive to variations in vapour pressure deficit than to variations in precipitation. Anisohydric ecosystem productivity is over three times more sensitive to vapour pressure deficit than isohydric ecosystem productivity. The precipitation sensitivity of summer productivity increases with anisohydricity only for the most anisohydric ecosystems. We conclude that increases in vapour pressure deficit rather than changes in precipitation—both of which are expected impacts of climate change—will be a dominant influence on future grassland productivity.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Spatial patterns of vegetation and climatic conditions averaged between 1981 and 2013.
Figure 2: Joint probability density function between NDVI and solar-induced fluorescence (SIF) (proportional to productivity).
Figure 3: Variations of standardized sensitivity to aridity with anisohydricity.

References

  1. Bonan, G. B., Williams, M., Fisher, R. A. & Oleson, K. W. Modeling stomatal conductance in the Earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum. Geosci. Model Dev. 7, 2193–2222 (2014).

    Article  Google Scholar 

  2. Sperry, J. S. & Love, D. M. What plant hydraulics can tell us about responses to climate-change droughts. New Phytol. 207, 14–27 (2015).

    Article  Google Scholar 

  3. Tardieu, F. & Simonneau, T. Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J. Exp. Bot. 49, 419–432 (1998).

    Article  Google Scholar 

  4. Skelton, R. P., West, A. G. & Dawson, T. E. Predicting plant vulnerability to drought in biodiverse regions using functional traits. Proc. Natl Acad. Sci. USA 112, 5744–5749 (2015).

    Article  Google Scholar 

  5. Manzoni, S. et al. Hydraulic limits on maximum plant transpiration and the emergence of the safety-efficiency trade-off. New Phytol. 198, 169–178 (2013).

    Article  Google Scholar 

  6. Garcia-Forner, N. et al. Responses of two semiarid conifer tree species to reduced precipitation and warming reveal new perspectives for stomatal regulation. Plant Cell Environ. 39, 38–49 (2015).

    Article  Google Scholar 

  7. Martinez-Vilalta, J., Poyatos, R., Aguad, D., Retana, J. & Mencuccini, M. A new look at water transport regulation in plants. New Phytol. 204, 105–115 (2014).

    Article  Google Scholar 

  8. Roman, D. T. et al. The role of isohydric and anisohydric species in determining ecosystem-scale response to severe drought. Oecologia 179, 641–656 (2015).

    Article  Google Scholar 

  9. Berg, A. et al. Land–atmosphere feedbacks amplify aridity increase over land under global warming. Nat. Clim. Change 6, 1–7 (2016).

    Article  Google Scholar 

  10. de Arellano, J. V.-G., van Heerwaarden, C. C. & Lelieveld, J. Modelled suppression of boundary-layer clouds by plants in a CO2-rich atmosphere. Nat. Geosci. 5, 701–704 (2012).

    Article  Google Scholar 

  11. Teuling, A. J. et al. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, 722–727 (2010).

    Article  Google Scholar 

  12. Konings, A. G., Dekker, S. C., Rietkerk, M. & Katul, G. G. Drought sensitivity of patterned vegetation determined by rainfall-land surface feedbacks. J. Geophys. Res. Biogeosci. 116, 1–15 (2011).

    Article  Google Scholar 

  13. Friedlingstein, P. et al. Climate–carbon cycle feedback analysis: results from the C4 MIP model intercomparison. J. Clim. 19, 3337–3353 (2006).

    Article  Google Scholar 

  14. McDowell, N. et al. Mechanisms of plant survival and mortality during drought: why do some plants survive while others succumb to drought? New Phytol. 178, 719–739 (2008).

    Article  Google Scholar 

  15. Choat, B. et al. Global convergence in the vulnerability of forests to drought. Nature 491, 752–755 (2012).

    Article  Google Scholar 

  16. Craine, J. M. et al. Global diversity of drought tolerance and grassland climate-change resilience. Nat. Clim. Change 3, 63–67 (2012).

    Article  Google Scholar 

  17. Jackson, T. J. & Schmugge, T. J. Vegetation effects on the microwave emission of soils. Remote Sens. Environ. 36, 203–212 (1991).

    Article  Google Scholar 

  18. Konings, A. G. & Gentine, P. Global variations in ecosystem-scale isohydricity. Glob. Chang. Biol. 23, 891–905 (2017).

    Article  Google Scholar 

  19. Petrie, M. D. et al. The sensitivity of carbon exchanges in Great Plains grasslands to precipitation variability. J. Geophys. Res. Biogeosci. 121, 1–15 (2016).

    Article  Google Scholar 

  20. Ukkola, A. M. et al. Reduced streamflow in water-stressed climates consistent with CO2 effects on vegetation. Nat. Clim. Change 6, 75–78 (2015).

    Article  Google Scholar 

  21. Hovenden, M. J., Newton, P. C. D. & Wills, K. E. Seasonal not annual rainfall determines grassland biomass response to carbon dioxide. Nature 511, 583–586 (2014).

    Article  Google Scholar 

  22. Engelbrecht, B. M. J. et al. Drought sensitivity shapes species distribution patterns in tropical forests. Nature 447, 80–82 (2007).

    Article  Google Scholar 

  23. Oren, R. et al. Survey and synthesis of intra- and interspecific variation in stomatal sensitivity to vapour pressure deficit. Plant Cell Environ. 22, 1515–1526 (1999).

    Article  Google Scholar 

  24. Rigden, A. J. & Salvucci, G. D. Stomatal response to humidity and CO2 implicated in recent decline in U.S. evaporation. Glob. Change Biol. http://dx.doi.org/10.1111/gcb.13439 (2016).

  25. Novick, K. A. et al. The increasing importance of atmospheric demand for ecosystem water and carbon fluxes. Nat. Clim. Change 1, 1–5 (2016).

    Google Scholar 

  26. Sulman, B. N. et al. High atmospheric demand for water can limit forest carbon uptake and transpiration as severely as dry soil. Geophys. Res. Lett. 43, 9686–9695 (2016).

    Article  Google Scholar 

  27. Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2013).

    Article  Google Scholar 

  28. Lobell, D. B. et al. Greater sensitivity to drought accompanies maize yield increase in the U.S. Midwest. Science 344, 516–519 (2014).

    Article  Google Scholar 

  29. Williams, A. P. et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat. Clim. Change 3, 292–297 (2012).

    Article  Google Scholar 

  30. Scheff, J. & Frierson, D. M. W. Scaling potential evapotranspiration with greenhouse warming. J. Clim. 27, 1539–1558 (2014).

    Article  Google Scholar 

  31. Scurlock, J. M. O. & Hall, D. O. The global carbon sink: a grassland perspective. Glob. Change Biol. 4, 229–233 (1998).

    Article  Google Scholar 

  32. Poulter, B. et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 509, 600–603 (2014).

    Article  Google Scholar 

  33. Cook, B. I., Ault, T. R. & Smerdon, J. E. Unprecedented 21st century drought risk in the American Southwest and Central Plains. Sci. Adv. 1, 1–7 (2015).

    Google Scholar 

  34. Hufkens, K. et al. Productivity of North American grasslands is increased under future climate scenarios despite rising aridity. Nat. Clim. Change 6, 710–714 (2016).

    Article  Google Scholar 

  35. Fridley, J. D., Lynn, J. S., Grime, J. P. & Askew, A. P. Longer growing seasons shift grassland vegetation towards more-productive species. Nat. Clim. Change 6, 865–868 (2016).

    Article  Google Scholar 

  36. Brookshire, E. N. J. & Weaver, T. Long-term decline in grassland productivity driven by increasing dryness. Nat. Commun. 6, 7148 (2015).

    Article  Google Scholar 

  37. Tucker, C. et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).

    Article  Google Scholar 

  38. Wang, Q., Adiku, S., Tenhunen, J. & Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ. 94, 244–255 (2005).

    Article  Google Scholar 

  39. Zhang, Y. et al. Consistency between sun-induced chlorophyll fluorescence and gross primary production of vegetation in North America. Remote Sens. Environ. 183, 154–169 (2016).

    Article  Google Scholar 

  40. Cotton, J. M., Cerling, T. E., Hoppe, K. A., Mosier, T. M. & Still, C. J. Climate, CO2, and the history of North American grasses since the Last Glacial Maximum. Sci. Adv. 2, e1501346 (2016).

    Article  Google Scholar 

  41. Byrne, M. P. & O’Gorman, P. A. Link between land-ocean warming contrast and surface relative humidities in simulations with coupled climate models. Geophys. Res. Lett. 40, 5223–5227 (2013).

    Article  Google Scholar 

  42. Trenberth, K. E. Changes in precipitation with climate change. Clim. Res. 47, 123–138 (2011).

    Article  Google Scholar 

  43. Sperry, J. S. et al. Pragmatic hydraulic theory predicts stomatal responses to climatic water deficits. New Phytol. 212, 577–589 (2016).

    Article  Google Scholar 

  44. Mirfenderesgi, G. et al. Tree-level hydrodynamic approach for modeling aboveground water storage and stomatal conductance illuminates the effects of tree hydraulic strategy. J. Geophys. Res. Biogeosci. 121, 1792–1813 (2016).

    Article  Google Scholar 

  45. Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M. & Guan, K. Diversity in plant hydraulic traits explains seasonal and inter-annual variations of vegetation dynamics in seasonally dry tropical forests. New Phytol. 212, 80–95 (2016).

    Article  Google Scholar 

  46. Tai, X., Mackay, D. S., Anderegg, W. R. L., Sperry, J. S. & Brooks, P. D. Plant hydraulics improves and topography mediates prediction of aspen mortality in southwestern USA. New Phytol. 213, 113–127 (2017).

    Article  Google Scholar 

  47. van Bodegom, P. M., Douma, J. C. & Verheijen, L. M. A fully traits-based approach to modeling global vegetation distribution. Proc. Natl Acad. Sci. USA 111, 13733–13738 (2013).

    Article  Google Scholar 

  48. Díaz, S. et al. The global spectrum of plant form and function. Nature 529, 1–17 (2015).

    Google Scholar 

  49. Schrodt, F. et al. BHPMF - a hierarchical Bayesian approach to gap-filling and trait prediction for macroecology and functional biogeography. Glob. Ecol. Biogeogr. 24, 1510–1521 (2015).

    Article  Google Scholar 

  50. Bloom, A. A., Exbrayat, J.-F., van der Velde, I. R., Feng, L. & Williams, M. The decadal state of the terrestrial carbon cycle: global retrievals of terrestrial carbon allocation, pools, and residence times. Proc. Natl Acad. Sci. USA 113, 1285–1290 (2016).

    Article  Google Scholar 

  51. Richter, H. Water relations of plants in the field: some comments on the measurement of selected parameters. J. Exp. Bot. 48, 1–7 (1997).

    Article  Google Scholar 

  52. Meesters, A. G. C. A., De Jeu, R. A. M. & Owe, M. Analytical derivation of the vegetation optical depth from the microwave polarization difference index. IEEE Geosci. Remote Sens. Lett. 2, 121–123 (2005).

    Article  Google Scholar 

  53. Owe, M., de Jeu, R. & Walker, J. A methodology for surface soil moisture and vegetation optical depth retrieval using the microwave polarization difference index. IEEE Trans. Geosci. Remote Sensing 39, 1643–1654 (2001).

    Article  Google Scholar 

  54. Konings, A. G., Entekhabi, D., Chan, S. K. & Njoku, E. G. Effect of radiative transfer uncertainty on L-band radiometric soil moisture retrieval. IEEE Trans. Geosci. Remote Sens. 49, 2686–2698 (2011).

    Article  Google Scholar 

  55. Konings, A. G. et al. Vegetation optical depth and scattering albedo retrieval using time series of dual-polarized L-band radiometer observations. Remote Sens. Environ. 172, 178–189 (2016).

    Article  Google Scholar 

  56. Tucker, C. et al. An extended AVHRR 8-km NDVI dataset compatible with MODIS and SPOT vegetation NDVI data. Int. J. Remote Sens. 26, 4485–4498 (2005).

    Article  Google Scholar 

  57. Wang, Q., Adiku, S., Tenhunen, J. & Granier, A. On the relationship of NDVI with leaf area index in a deciduous forest site. Remote Sens. Environ. 94, 244–255 (2005).

    Article  Google Scholar 

  58. Joiner, J. et al. Global monitoring of terrestrial chlorophyll fluorescence from moderate spectral resolution near-infrared satellite measurements: methodology, simulations, and application to GOME-2. Atmos. Meas. Tech. Discuss. 6, 3883–3930 (2013).

    Article  Google Scholar 

  59. Daly, C. et al. Physiographically sensitive mapping of climatological temperature and precipitation across the conterminous United States. Int. J. Climatol. 28, 2031–2064 (2008).

    Article  Google Scholar 

  60. Mitchell, K. E. et al. The multi-institution North American land data assimilation system (NLDAS): utilizing multiple GCIP products and partners in a continental distributed hydrological modeling system. J. Geophys. Res. 109, D07S90 (2004).

    Google Scholar 

  61. Xia, Y. et al. Continental-scale water and energy flux analysis and validation for the North American Land Data Assimilation System project phase 2 (NLDAS-2): 1. Intercomparison and application of model products. J. Geophys. Res. Atmos. 117, D03109 (2012).

    Google Scholar 

  62. Xia, Y. et al. Continental-scale water and energy flux analysis and validation for North American Land Data Assimilation System project phase 2 (NLDAS-2): 2. Validation of model-simulated streamflow. J. Geophys. Res. 117, 1–23 (2012).

    Google Scholar 

  63. Xia, Y. et al. Evaluation of multi-model simulated soil moisture in NLDAS-2. J. Hydrol. 512, 107–125 (2014).

    Article  Google Scholar 

  64. Mesinger, F. et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 87, 343–360 (2006).

    Article  Google Scholar 

  65. Kennedy, A. D. et al. A comparison of MERRA and NARR Reanalyses with the DOE ARM SGP data. J. Clim. 24, 4541–4557 (2011).

    Article  Google Scholar 

  66. Mahrt, L. & Ek, M. The influence of atmospheric stability on potential evaporation. J. Clim. Appl. Meteorol. 23, 222–234 (1984).

    Article  Google Scholar 

  67. Xia, Y., Ek, M., Wei, H. & Meng, J. Comparative analysis of relationships between NLDAS-2 forcings and model outputs. Hydrol. Process. 26, 467–474 (2012).

    Article  Google Scholar 

  68. Koster, R. D. & Suarez, M. J. The components of a SVAT scheme and their effects on a gcms hydrological cycle. Adv. Water Resour. 17, 61–78 (1994).

    Article  Google Scholar 

  69. Ek, M. B. et al. Implementation of Noah land surface model advances in the National Centers for Environmental Prediction operational mesoscale Eta model. J. Geophys. Res. 108, 8851 (2003).

    Article  Google Scholar 

  70. Miller, D. A. & White, R. A. A Conterminous United States multilayer soil characteristics dataset for regional climate and hydrology modeling. Earth Interact. 2, 1–26 (1998).

    Article  Google Scholar 

  71. Robock, A. et al. Evaluation of the North American land data assimilation system over the southern Great Plains during the warm season. J. Geophys. Res. 108, 8846 (2003).

    Google Scholar 

  72. Xia, Y., Ek, M. B., Wu, Y., Ford, T. & Quiring, S. M. Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part I: comparison and analysis. J. Hydrometeorol. 16, 1962–1980 (2015).

    Article  Google Scholar 

  73. Xia, Y., Ek, M. B., Wu, Y., Ford, T. & Quiring, S. M. Comparison of NLDAS-2 simulated and NASMD observed daily soil moisture. Part II: Impact of soil texture classification and vegetation type mismatches. J. Hydrometeorol. 16, 1981–2000 (2015).

    Article  Google Scholar 

  74. Long, D., Longuevergne, L. & Scanlon, B. R. Uncertainty in evapotranspiration from land surface modeling, remote sensing, and GRACE satellites. Water Resour. Res. 50, 1131–1151 (2014).

    Article  Google Scholar 

  75. Peters-Lidard, C. D., Kumar, S. V., Mocko, D. M. & Tian, Y. Estimating evapotranspiration with land data assimilation systems. Hydrol. Process. 25, 3979–3992 (2011).

    Article  Google Scholar 

  76. Xia, Y., Hobbins, M. T., Mu, Q. & Ek, M. B. Evaluation of NLDAS-2 evapotranspiration against tower flux site observations. Hydrol. Process. 29, 1757–1771 (2015).

    Article  Google Scholar 

  77. Xia, Y., Peter-Lidard, C. D., Huang, M., Wei, H. & Ek, M. Improved NLDAS-2 Noah-simulated hydrometeorological products with an interim run. Hydrol. Process. 29, 780–792 (2015).

    Article  Google Scholar 

  78. Xia, Y. et al. Validation of Noah-simulated soil temperature in the North American land data assimilation system phase 2. J. Appl. Meteorol. Climatol. 52, 455–471 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Joiner for providing the GOME-2 SIF data and for helpful comments, and to the providers of the other data sets used in this study. A.P.W. was funded by Columbia University’s Center for Climate and Life. P.G. was supported by a DOE Early Career Award and an NSF CAREER grant.

Author information

Authors and Affiliations

Authors

Contributions

A.G.K., A.P.W. and P.G. conceived and designed the study. A.G.K. and A.P.W. processed data and A.G.K. performed the data analysis. All authors contributed to interpreting the analysis. A.G.K. wrote the first draft of the manuscript, and all authors edited the manuscript.

Corresponding author

Correspondence to A. G. Konings.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 992 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Konings, A., Williams, A. & Gentine, P. Sensitivity of grassland productivity to aridity controlled by stomatal and xylem regulation. Nature Geosci 10, 284–288 (2017). https://doi.org/10.1038/ngeo2903

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2903

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing