Abstract
The composition of the lower mantle—comprising 56% of Earth’s volume—remains poorly constrained. Among the major elements, Mg/Si ratios ranging from ∼0.9–1.1, such as in rocky Solar-System building blocks (or chondrites), to ∼1.2–1.3, such as in upper-mantle rocks (or pyrolite), have been proposed. Geophysical evidence for subducted lithosphere deep in the mantle has been interpreted in terms of efficient mixing, and thus homogenous Mg/Si across most of the mantle. However, previous models did not consider the effects of variable Mg/Si on the viscosity and mixing efficiency of lower-mantle rocks. Here, we use geodynamic models to show that large-scale heterogeneity associated with a 20-fold change in viscosity, such as due to the dominance of intrinsically strong (Mg, Fe)SiO3–bridgmanite in low-Mg/Si domains, is sufficient to prevent efficient mantle mixing, even on large scales. Models predict that intrinsically strong domains stabilize mantle convection patterns, and coherently persist at depths of about 1,000–2,200 km up to the present-day, separated by relatively narrow up-/downwelling conduits of pyrolitic material. The stable manifestation of such bridgmanite-enriched ancient mantle structures (BEAMS) may reconcile the geographical fixity of deep-rooted mantle upwelling centres, and geophysical changes in seismic-tomography patterns, radial viscosity, rising plumes and sinking slabs near 1,000 km depth. Moreover, these ancient structures may provide a reservoir to host primordial geochemical signatures.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout
Similar content being viewed by others
References
Fukao, Y. & Obayashi, M. Subducted slabs stagnant above, penetrating through, and trapped below the 660 km discontinuity. J. Geophys. Res. 118, 5920–5938 (2013).
Rickers, F., Fichtner, A. & Trampert, J. The Iceland–Jan Mayen plume system and its impact on mantle dynamics in the North Atlantic region: evidence from full-waveform inversion. Earth Planet. Sci. Lett. 367, 39–51 (2013).
French, S. W. & Romanowicz, B. Broad plumes rooted at the base of the Earth’s mantle beneath major hotspots. Nature 525, 95–99 (2015).
Marquardt, H. & Miyagi, L. Slab stagnation in the shallow lower mantle linked to an increase in mantle viscosity. Nat. Geosci. 8, 311–314 (2015).
Rudolph, M., Lekic, V. & Lithgow-Bertelloni, C. Viscosity jump in Earth’s mid-mantle. Science 350, 1349–1352 (2015).
Ballmer, M. D., Schmerr, N. C., Nakagawa, T. & Ritsema, J. Compositional mantle layering revealed by slab stagnation at ∼1,000-km depth. Sci. Adv. 1, e1500815 (2015).
Badro, J., Côté, A. S. & Brodholt, J. P. A seismologically consistent compositional model of Earth’s core. Proc. Natl Acad. Sci. USA 111, 7542–7545 (2014).
Yamazaki, D. & Karato, S.-I. Some mineral physics constraints on the rheology and geothermal structure of Earth’s lower mantle. Am. Mineral. 86, 385–391 (2001).
Girard, J., Amulele, G., Farla, R., Mohiuddin, A. & Karato, S.-I. Shear deformation of bridgmanite and magnesiowüstite aggregates at lower mantle conditions. Science 351, 144–147 (2016).
Manga, M. Low-viscosity mantle blobs are sampled preferentially at regions of surface divergence and stirred rapidly into the mantle. Phys. Earth Planet. Inter. 180, 104–107 (2010).
Pertermann, M. & Hirschmann, M. M. Partial melting experiments on a MORB-like pyroxenite between 2 and 3 GPa: constraints on the presence of pyroxenite in basalt source regions from solidus location and melting rate. J. Geophys. Res. 108, 2125 (2003).
Kellogg, L. in Advances in Geophysics Vol. 34 (eds Dmowska, R. & Saltzman, B.) 1–33 (Academic, 1993).
Coltice, N. & Ricard, Y. Geochemical observations and one layer mantle convection. Earth Planet. Sci. Lett. 74, 125–137 (1999).
Dupré, B. & Allègre, C. J. Pb–Sr isotope variation in Indian Ocean basalts and mixing phenomena. Nature 303, 142–146 (1983).
Schubert, G. & Spohn, T. Two-layer mantle convection and the depletion of radioactive elements in the lower mantle. Geophys. Res. Lett. 8, 951–954 (1981).
Dziewonski, A. & Anderson, D. Preliminary reference Earth model. Phys. Earth Planet. Inter. 25, 297–356 (1981).
Murakami, M., Ohishi, Y., Hirao, N. & Hirose, K. A perovskitic lower mantle inferred from high-pressure, high-temperature sound velocity data. Nature 485, 90–95 (2012).
Ismailova, L. et al. Stability of Fe, Al-bearing bridgmanite in the lower mantle and synthesis of pure Fe-bridgmanite. Sci. Adv. 2, e1600427 (2016).
Matas, J., Bass, J., Ricard, Y., Mattern, E. & Bukowinski, M. On the bulk composition of the lower mantle: predictions and limitations from generalized inversion of radial seismic profiles. Geophys. J. Int. 170, 764–780 (2007).
Wang, X., Tsuchiya, T. & Hase, A. Computational support for a pyrolitic lower mantle containing ferric iron. Nat. Geosci. 8, 556–559 (2015).
Hyung, E., Huang, S., Petaev, M. I. & Jacobsen, S. B. Is the mantle chemically stratified? Insights from sound velocity modeling and isotope evolution of an early magma ocean. Earth Planet. Sci. Lett. 440, 158–168 (2016).
Hernlund, J. & Houser, C. On the distribution of seismic velocities in Earth’s deep mantle. Earth Planet. Sci. Lett. 265, 423–437 (2008).
Houser, C. & Williams, Q. The relative wavelengths of fast and slow velocity anomalies in the lower mantle: contrary to the expectations of dynamics? Phys. Earth Planet. Inter. 176, 187–197 (2009).
Lekic, V., Cottaar, S., Dziewonski, A. & Romanowicz, B. Cluster analysis of global lower mantle tomography: a new class of structure and implications for chemical heterogeneity. Earth Planet. Sci. Lett. 357–358, 68–77 (2012).
Cottaar, S. & Lekic, V. Morphology of seismically slow lower-mantle structures. Geophys. J. Int. 207, 1122–1136 (2016).
Dziewonski, A., Lekic, V. & Romanowicz, B. Mantle anchor structure: an argument for bottom up tectonics. Earth Planet. Sci. Lett. 299, 69–79 (2010).
Van Der Meer, D. G., Spakman, W., Van Hinsbergen, D. J., Amaru, M. L. & Torsvik, T. H. Towards absolute plate motions constrained by lower-mantle slab remnants. Nat. Geosci. 3, 36–40 (2010).
Becker, T. & Faccenna, C. Mantle conveyor beneath the Tethyan collisional belt. Earth Planet. Sci. Lett. 310, 453–461 (2011).
Faccenna, C., Becker, T., Conrad, C. & Husson, L. Mountain building and mantle dynamics. Tectonics 32, 80–93 (2013).
Conrad, C. P., Steinberger, B. & Torsvik, T. H. Stability of active mantle upwelling revealed by net characteristics of plate tectonics. Nature 498, 479–482 (2013).
Torsvik, T. H., Burke, K., Steinberger, B., Webb, S. J. & Ashwal, L. D. Diamonds sampled by plumes from the core–mantle boundary. Nature 466, 352–355 (2010).
Garnero, E. J. & McNamara, A. K. Structure and dynamics of Earth’s lower mantle. Science 320, 626–628 (2008).
Deschamps, F., Cobden, L. & Tackley, P. J. The primitive nature of large low shear-wave velocity provinces. Earth Planet. Sci. Lett. 349, 198–208 (2012).
Ballmer, M. D., Schumacher, L., Lekic, V., Thomas, C. & Ito, G. Compositional layering within the large low shear-wave velocity provinces in the lower mantle. Geochem. Geophys. Geosyst. 17, 5056–5077 (2016).
McNamara, A. K. & Zhong, S. Thermochemical structures beneath Africa and the Pacific Ocean. Nature 437, 1136–1139 (2005).
Tan, E. & Gurnis, M. Compressible thermochemical convection and application to lower mantle structures. J. Geophys. Res. 112, B06304 (2007).
Jenkins, J., Deuss, A. & Cottaar, S. Converted phases from sharp 1000 km depth mid-mantle heterogeneity beneath Western Europe. Earth Planet. Sci. Lett. 459, 196–207 (2016).
Tsujino, N. et al. Mantle dynamics inferred from the crystallographic preferred orientation of bridgmanite. Nature 539, 81–84 (2016).
Wookey, J. & Kendall, J.-M. Evidence of midmantle anisotropy from shear wave splitting and the influence of shear-coupled P waves. J. Geophys. Res. 109, B07309 (2004).
Chang, S.-J., Ferreira, A. M. & Faccenda, M. Upper-and mid-mantle interaction between the Samoan plume and the Tonga-Kermadec slabs. Nat. Commun. 7, 10799 (2016).
Kaminski, E. & Javoy, M. A two-stage scenario for the formation of the Earth’s mantle and core. Earth Planet. Sci. Lett. 365, 97–107 (2013).
Elkins-Tanton, L. Linked magma ocean solidification and atmospheric growth for Earth and Mars. Earth Planet. Sci. Lett. 271, 181–191 (2008).
Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).
Caracausi, A., Avice, G., Burnard, P. G., Füri, E. & Marty, B. Chondritic xenon in the Earth’s mantle. Nature 533, 82–85 (2016).
Rizo, H. et al. Preservation of Earth-forming events in the tungsten isotopic composition of modern flood basalts. Science 352, 809–812 (2016).
Hart, S. & Hauri, E. et al. Mantle plumes and entrainment: isotopic evidence. Science 256, 517–520 (1992).
White, W. Isotopes, DUPAL, LLSVPs, and Anekantavada. Chem. Geol. 419, 10–28 (2015).
Garapić, G., Mallik, A., Dasgupta, R. & Jackson, M. G. Oceanic lavas sampling the high-3He/4He mantle reservoir: primitive, depleted, or re-enriched? Am. Mineral. 100, 2066–2081 (2015).
Becker, T. W., Kellogg, J. B. & O’Connell, R. J. Thermal constraints on the survival of primitive blobs in the lower mantle. Earth Planet. Sci. Lett. 171, 351–365 (1999).
Parmentier, E. M., Turcotte, D. L. & Torrance, K. E. Studies of finite amplitude non-Newtonian thermal convection with application to convection in the Earth’s mantle. J. Geophys. Res. 81, 1839–1846 (1976).
Houser, C., Masters, G., Shearer, P. & Laske, G. Shear and compressional velocity models of the mantle from cluster analysis of long-period waveforms. Geophys. J. Int. 174, 195–212 (2008).
Moresi, L., Zhong, S. & Gurnis, M. The accuracy of finite element solutions of Stokes’s flow with strongly varying viscosity. Phys. Earth Planet. Inter. 97, 83–94 (1996).
Ballmer, M., Van Hunen, J., Ito, G., Bianco, T. & Tackley, P. Intraplate volcanism with complex age-distance patterns: a case for small-scale sublithospheric convection. Geochem. Geophys. Geosyst. 10, Q06015 (2009).
Lay, T., Hernlund, J. & Buffett, B. A. Core–mantle boundary heat flow. Nat. Geosci. 1, 25–32 (2008).
Nomura, R. et al. Low core–mantle boundary temperature inferred from the solidus of pyrolite. Science 343, 522–525 (2014).
Shukla, G. et al. Thermoelasticity of Fe2+-bearing bridgmanite. Geophys. Res. Lett. 42, 1741–1749 (2015).
Wu, Z., Justo, J., da Silva, C., de Gironcoli, S. & Wentzcovitch, R. M. Anomalous thermodynamic properties in ferropericlase throughout its spin crossover transition. Phys. Rev. B 80, 014409 (2009).
Wu, Z., Justo, J. & Wentzcovitch, R. Elastic anomalies in a spin-crossover system: ferropericlase at lower mantle conditions. Phys. Rev. Lett. 110, 228501 (2013).
Kawai, K. & Tsuchiya, T. P–V–T equation of state of cubic CaSiO3 perovskite from first-principles computation. J. Geophys. Res. 119, 2801–2809 (2014).
Stixrude, L. & Lithgow-Bertelloni, C. Thermodynamics of mantle minerals – I. Physical properties. Geophys. J. Int. 162, 610–632 (2005).
Baker, M. & Beckett, J. The origin of abyssal peridotites: a reinterpretation of constraints based on primary bulk compositions. Earth Planet. Sci. Lett. 171, 49–61 (1999).
McDonough, W. & Sun, S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).
Williams, Q. & Knittle, E. Earth’s deep mantle: structure, composition, and evolution. Geophys. Monog. Series 160, 187–199 (2005).
Irifune, T. et al. Iron partitioning and density changes of pyrolite in Earth’s lower mantle. Science 327, 193–195 (2010).
Irifune, T. et al. The postspinel phase boundary in Mg2SiO4 determined by in situ X-ray diffraction. Science 279, 1698–1700 (1998).
Acknowledgements
The authors thank F. Deschamps for comments that helped to improve the manuscript. They are further grateful to A. Dziewonski for discussions on the seismic structure and dynamics of the mantle. Calculations have been performed on akua, the in-house cluster of the Department of Geology & Geophysics, University of Hawaii. M.D.B., C.H., J.W.H. and K.H. were supported by the WPI-funded Earth-Life Science Institute at Tokyo Institute of Technology. C.H., J.W.H., and K.H. received further support through MEXT KAKENHI grant numbers 15H05832 and 16H06285. R.M.W. was funded through NSF grants EAR-1319361 and EAR-1348066.
Author information
Authors and Affiliations
Contributions
M.D.B., C.H. and J.W.H. wrote the manuscript and composed the figures. M.D.B. performed and analysed geodynamic models. C.H. and R.M.W. computed seismic velocities in the lower mantle. J.W.H. and K.H. analysed the influence of composition on density and viscosity. All authors contributed to the BEAMS hypothesis, and the design of the study.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 2186 kb)
Supplementary Movies
Supplementary Movies (MOV 33633 kb)
Supplementary Movies
Supplementary Movies (MOV 11229 kb)
Supplementary Movies
Supplementary Movies (MOV 9042 kb)
Supplementary Movies
Supplementary Movies (MOV 3343 kb)
Rights and permissions
About this article
Cite this article
Ballmer, M., Houser, C., Hernlund, J. et al. Persistence of strong silica-enriched domains in the Earth’s lower mantle. Nature Geosci 10, 236–240 (2017). https://doi.org/10.1038/ngeo2898
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo2898
This article is cited by
-
Remnants of shifting early Cenozoic Pacific lower mantle flow imaged beneath the Philippine Sea Plate
Nature Geoscience (2024)
-
Earth’s mantle composition revealed by mantle plumes
Nature Reviews Earth & Environment (2023)
-
Tetracarbonates in silicate melts may be at the origin of a deep carbon reservoir in the deep Earth
Communications Earth & Environment (2023)
-
Variation in bridgmanite grain size accounts for the mid-mantle viscosity jump
Nature (2023)
-
Effects of depth- and composition-dependent thermal conductivity and the compositional viscosity ratio on the long-term evolution of large thermochemical piles of primordial material in the lower mantle of the Earth: Insights from 2-D numerical modeling
Science China Earth Sciences (2023)