Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Non-chondritic iron isotope ratios in planetary mantles as a result of core formation


Information about the materials and conditions involved in planetary formation and differentiation in the early Solar System is recorded in iron isotope ratios. Samples from Earth, the Moon, Mars and the asteroid Vesta reveal significant variations in iron isotope ratios, but the sources of these variations remain uncertain. Here we present experiments that demonstrate that under the conditions of planetary core formation expected for the Moon, Mars and Vesta, iron isotopes fractionate between metal and silicate due to the presence of nickel, and enrich the bodies’ mantles in isotopically light iron. However, the effect of nickel diminishes at higher temperatures: under conditions expected for Earth’s core formation, we infer little fractionation of iron isotopes. From our experimental results and existing conceptual models of magma ocean crystallization and mantle partial melting, we find that nickel-induced fractionation can explain iron isotope variability found in planetary samples without invoking nebular or accretionary processes. We suggest that near-chondritic iron isotope ratios of basalts from Mars and Vesta, as well as the most primitive lunar basalts, were achieved by melting of isotopically light mantles, whereas the heavy iron isotope ratios of terrestrial ocean floor basalts are the result of melting of near-chondritic Earth mantle.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: The Fe isotopic compositions of planetary materials.
Figure 2: Results of metal–silicate equilibration experiments.
Figure 3: The range in Fe isotopic compositions of bulk planetary mantles predicted from core formation models.


  1. 1

    Young, E. D. et al. Oxygen isotopic evidence for vigorous mixing during the Moon-forming giant impact. Science 351, 493–496 (2016).

    Article  Google Scholar 

  2. 2

    Zhang, J. J., Dauphas, N., Davis, A. M., Leya, I. & Fedkin, A. The proto-Earth as a significant source of lunar material. Nat. Geosci. 5, 251–255 (2012).

    Article  Google Scholar 

  3. 3

    Lugmair, G. W. & Shukolyukov, A. Early Solar System timescales according to 53Mn-53Cr systematics. Geochim. Cosmochim. Acta 62, 2863–2886 (1998).

    Article  Google Scholar 

  4. 4

    Poitrasson, F., Halliday, A. N., Lee, D. C., Levasseur, S. & Teutsch, N. Iron isotope differences between Earth, Moon, Mars and Vesta as possible records of contrasted accretion mechanisms. Earth Planet. Sci. Lett. 223, 253–266 (2004).

    Article  Google Scholar 

  5. 5

    Weyer, S. et al. Iron isotope fractionation during planetary differentiation. Earth Planet. Sci. Lett. 240, 251–264 (2005).

    Article  Google Scholar 

  6. 6

    Schoenberg, R. & von Blanckenburg, F. Modes of planetary-scale Fe isotope fractionation. Earth Planet. Sci. Lett. 252, 342–359 (2006).

    Article  Google Scholar 

  7. 7

    Teng, F. Z., Dauphas, N., Huang, S. C. & Marty, B. Iron isotopic systematics of oceanic basalts. Geochim. Cosmochim. Acta 107, 12–26 (2013).

    Article  Google Scholar 

  8. 8

    Craddock, P. R., Warren, J. M. & Dauphas, N. Abyssal peridotites reveal the near-chondritic Fe isotopic composition of the Earth. Earth Planet. Sci. Lett. 365, 63–76 (2013).

    Article  Google Scholar 

  9. 9

    Wang, K. et al. Iron isotope fractionation in planetary crusts. Geochim. Cosmochim. Acta 89, 31–45 (2012).

    Article  Google Scholar 

  10. 10

    Liu, Y. et al. Oxygen and iron isotope constraints on near-surface fractionation effects and the composition of lunar mare basalt source regions. Geochim. Cosmochim. Acta 74, 6249–6262 (2010).

    Article  Google Scholar 

  11. 11

    Craddock, P. R. & Dauphas, N. Iron isotopic compositions of geological reference materials and chondrites. Geostand. Geoanal. Res. 35, 101–123 (2011).

    Article  Google Scholar 

  12. 12

    Williams, H. M. et al. Fe isotope fractionation in iron meteorites: new insights into metal-sulphide segregation and planetary accretion. Earth Planet. Sci. Lett. 250, 486–500 (2006).

    Article  Google Scholar 

  13. 13

    Poitrasson, F., Levasseur, S. & Teutsch, N. Significance of iron isotope mineral fractionation in pallasites and iron meteorites for the core-mantle differentiation of terrestrial planets. Earth Planet. Sci. Lett. 234, 151–164 (2005).

    Article  Google Scholar 

  14. 14

    Sossi, P. A., Nebel, O., Anand, M. & Poitrasson, F. On the iron isotope composition of Mars and volatile depletion in the terrestrial planets. Earth Planet. Sci. Lett. 449, 360–371 (2016).

    Article  Google Scholar 

  15. 15

    Scott, E. R. D. Chemical fractionation in iron meteorites and its interpretation. Geochim. Cosmochim. Acta 36, 1205–1236 (1972).

    Article  Google Scholar 

  16. 16

    Poitrasson, F. Does planetary differentiation really fractionate iron isotopes? Earth Planet. Sci. Lett. 256, 484–492 (2007).

    Article  Google Scholar 

  17. 17

    Williams, H. M., Wood, B. J., Wade, J., Frost, D. J. & Tuff, J. Isotopic evidence for internal oxidation of the Earth’s mantle during accretion. Earth Planet. Sci. Lett. 321, 54–63 (2012).

    Article  Google Scholar 

  18. 18

    Polyakov, V. B. Equilibrium iron isotope fractionation at core–mantle boundary conditions. Science 323, 912–914 (2009).

    Article  Google Scholar 

  19. 19

    Georg, R. B., Halliday, A. N., Schauble, E. A. & Reynolds, B. C. Silicon in the Earth’s core. Nature 447, 1102–1106 (2007).

    Article  Google Scholar 

  20. 20

    Poitrasson, F., Roskosz, M. & Corgne, A. No iron isotope fractionation between molten alloys and silicate melt to 2000 degrees C and 7.7 GPa: experimental evidence and implications for planetary differentiation and accretion. Earth Planet. Sci. Lett. 278, 376–385 (2009).

    Article  Google Scholar 

  21. 21

    Hin, R. C., Schmidt, M. W. & Bourdon, B. Experimental evidence for the absence of iron isotope fractionation between metal and silicate liquids at 1 GPa and 1250–1300 °C and its cosmochemical consequences. Geochim. Cosmochim. Acta 93, 164–181 (2012).

    Article  Google Scholar 

  22. 22

    Shahar, A. et al. Sulfur-controlled iron isotope fractionation experiments of core formation in planetary bodies. Geochim. Cosmochim. Acta 150, 253–264 (2015).

    Article  Google Scholar 

  23. 23

    Badro, J., Cote, A. S. & Brodholt, J. P. A seismologically consistent compositional model of Earth’s core. Proc. Natl Acad. Sci. USA 111, 7542–7545 (2014).

    Article  Google Scholar 

  24. 24

    Shahar, A., Elardo, S. M. & Macris, C. A. in Non-Traditional Stable Isotopes Vol. 82 (eds Teng, F. Z., Dauphas, N. & Watkins, J. M.) Ch. 3, 65–84 (Reviews in Mineralogy and Geochemistry, Mineralogical Society of America, 2017).

    Google Scholar 

  25. 25

    Hume-Rothery, W. The Structures of Alloys of Iron: An Elementary Introduction (Elsevier, 2013).

    Google Scholar 

  26. 26

    Li, J. & Agee, C. B. The effect of pressure, temperature, oxygen fugacity and composition on partitioning of nickel and cobalt between liquid Fe-Ni-S alloy and liquid silicate: implications for the Earth’s core formation. Geochim. Cosmochim. Acta 65, 1821–1832 (2001).

    Article  Google Scholar 

  27. 27

    McDonough, W. F. & Sun, S. S. The composition of the Earth. Chem. Geol. 120, 223–253 (1995).

    Article  Google Scholar 

  28. 28

    Righter, K. & Drake, M. J. Core formation in Earth’s Moon, Mars, and Vesta. Icarus 124, 513–529 (1996).

    Article  Google Scholar 

  29. 29

    Dreibus, G. & Wänke, H. Mars, a volatile-rich planet. Hans Suess Festschrift 20, 367–381 (1985).

    Google Scholar 

  30. 30

    O’Neill, H. S. C. The origin of the Moon and the early history of the Earth - a chemical model. Part 1: the Moon. Geochim. Cosmochim. Acta 55, 1135–1157 (1991).

    Article  Google Scholar 

  31. 31

    Hertogen, J., Vizgirda, J. & Anders, E. Composition of the parent body of eucritic meteorites. Bull. Am. Astronom. Soc. 9, 458 (1977).

    Google Scholar 

  32. 32

    Anderson, D. L. Internal constitution of Mars. J. Geophys. Res. 77, 789–795 (1972).

    Article  Google Scholar 

  33. 33

    Corgne, A., Siebert, J. & Badro, J. Oxygen as a light element: a solution to single-stage core formation. Earth Planet. Sci. Lett. 288, 108–114 (2009).

    Article  Google Scholar 

  34. 34

    Siebert, J., Badro, J., Antonangeli, D. & Ryerson, F. J. Terrestrial accretion under oxidizing conditions. Science 339, 1194–1197 (2013).

    Article  Google Scholar 

  35. 35

    O’Rourke, J. G. & Stevenson, D. J. Powering Earth’s dynamo with magnesium precipitation from the core. Nature 529, 387–389 (2016).

    Article  Google Scholar 

  36. 36

    Steenstra, E. S., Rai, N., Knibbe, J. S., Lin, Y. H. & van Westrenen, W. New geochemical models of core formation in the Moon from metal-silicate partitioning of 15 siderophile elements. Earth Planet. Sci. Lett. 441, 1–9 (2016).

    Article  Google Scholar 

  37. 37

    Pringle, E. A., Savage, P. S., Badro, J., Barrat, J. A. & Moynier, F. Redox state during core formation on asteroid 4-Vesta. Earth Planet. Sci. Lett. 373, 75–82 (2013).

    Article  Google Scholar 

  38. 38

    Righter, K. & Chabot, N. L. Moderately and slightly siderophile element constraints on the depth and extent of melting in early Mars. Meteorit. Planet. Sci. 46, 157–176 (2011).

    Article  Google Scholar 

  39. 39

    Steenstra, E. S., Knibbe, J. S., Rai, N. & van Westrenen, W. Constraints on core formation in Vesta from metal-silicate partitioning of siderophile elements. Geochim. Cosmochim. Acta 177, 48–61 (2016).

    Article  Google Scholar 

  40. 40

    Russell, C. T. et al. Dawn at Vesta: testing the protoplanetary paradigm. Science 336, 684–686 (2012).

    Article  Google Scholar 

  41. 41

    Shahar, A. et al. Pressure-dependent isotopic composition of iron alloys. Science 352, 580–582 (2016).

    Article  Google Scholar 

  42. 42

    Dauphas, N. et al. Magma redox and structural controls on iron isotope variations in Earth’s mantle and crust. Earth Planet. Sci. Lett. 398, 127–140 (2014).

    Article  Google Scholar 

  43. 43

    Teng, F. Z., Dauphas, N. & Helz, R. T. Iron isotope fractionation during magmatic differentiation in Kilauea Iki Lava Lake. Science 320, 1620–1622 (2008).

    Article  Google Scholar 

  44. 44

    Weyer, S. What drives iron isotope fractionation in magma? Science 320, 1600–1601 (2008).

    Article  Google Scholar 

  45. 45

    Sossi, P. A., Foden, J. D. & Halverson, G. P. Redox-controlled iron isotope fractionation during magmatic differentiation: an example from the Red Hill intrusion, S. Tasmania. Contrib. Mineral. Petrol. 164, 757–772 (2012).

    Article  Google Scholar 

  46. 46

    Snyder, G. A., Taylor, L. A. & Neal, C. R. A chemical model for generating the sources of mare basalts: combined equilibrium and fractional crystallization of the lunar magmasphere. Geochim. Cosmochim. Acta 56, 3809–3823 (1992).

    Article  Google Scholar 

  47. 47

    Hess, P. C. & Parmentier, E. M. A model for the thermal and chemical evolution of the Moon’s interior: implications for the onset of mare volcanism. Earth Planet. Sci. Lett. 134, 501–514 (1995).

    Article  Google Scholar 

  48. 48

    Elardo, S. M., Draper, D. S. & Shearer, C. K. Lunar magma ocean crystallization revisited: bulk composition, early cumulate mineralogy, and the source regions of the highlands Mg-suite. Geochim. Cosmochim. Acta 75, 3024–3045 (2011).

    Article  Google Scholar 

  49. 49

    Shearer, C. K. & Papike, J. J. Basaltic magmatism on the Moon: a perspective from volcanic picritic glass beads. Geochim. Cosmochim. Acta 57, 4785–4812 (1993).

    Article  Google Scholar 

  50. 50

    Hess, P. C. On the source regions for mare picrite glasses. J. Geophys. Res. 105, 4347–4360 (2000).

    Article  Google Scholar 

  51. 51

    Vander Kaaden, K. E., Agee, C. B. & McCubbin, F. M. Density and compressibility of the molten lunar picritic glasses: implications for the roles of Ti and Fe in the structures of silicate melts. Geochim. Cosmochim. Acta 149, 1–20 (2015).

    Article  Google Scholar 

  52. 52

    Elardo, S. M., Shearer, C. K., Kaaden, K. E. V., McCubbin, F. M. & Bell, A. S. Petrogenesis of primitive and evolved basalts in a cooling Moon: experimental constraints from the youngest known lunar magmas. Earth Planet. Sci. Lett. 422, 126–137 (2015).

    Article  Google Scholar 

  53. 53

    Ritchie, N. W. M., Newbury, D. E. & Davis, J. M. EDS measurements of X-ray intensity at WDS precision and accuracy using a silicon drift detector. Microsc. Microanal. 18, 892–904 (2012).

    Article  Google Scholar 

  54. 54

    Armstrong, J. T. Comparative performance of SDD-EDS and WDS detectors for quantitative analysis of mineral specimens: the next generation of electron microprobe. Microsc. Microanal. 20, 692–693 (2014).

    Article  Google Scholar 

  55. 55

    Dauphas, N., Pourmand, A. & Teng, F. Z. Routine isotopic analysis of iron by HR-MC-ICPMS: how precise and how accurate? Chem. Geol. 267, 175–184 (2009).

    Article  Google Scholar 

  56. 56

    Shahar, A., Young, E. D. & Manning, C. E. Equilibrium high-temperature Fe isotope fractionation between fayalite and magnetite: an experimental calibration. Earth Planet. Sci. Lett. 268, 330–338 (2008).

    Article  Google Scholar 

Download references


We are grateful to T. D. Mock, M. F. Horan, C. K. I. Sio and J. A. Armstrong for assistance with clean laboratory chemistry, mass spectrometry and SDD–EDS analyses. J. Labidi is thanked for providing comments on an early version of the manuscript. This work was funded by NSF grant EAR-1321858 to A.S.

Author information




Both authors contributed equally to this work.

Corresponding author

Correspondence to Stephen M. Elardo.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2206 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Elardo, S., Shahar, A. Non-chondritic iron isotope ratios in planetary mantles as a result of core formation. Nature Geosci 10, 317–321 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing