Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages

Abstract

Understanding past climate trends is key for reliable projections of global warming and associated risks and hazards. Uncomfortably large discrepancies between vegetation-based summer temperature reconstructions (mainly based on pollen) and climate model results have been reported for the current interglacial, the Holocene. For the Mediterranean region these reconstructions indicate cooler-than-present mid-Holocene summers, in contrast with expectations based on climate models and long-term changes in summer insolation. We present new quantitative and replicated Holocene summer temperature reconstructions based on fossil chironomid midges from the northern central Mediterranean region. The Holocene thermal maximum is reconstructed 9,000–5,000 years ago and estimated to have been 1–2 °C warmer in mean July temperature than the recent pre-industrial period, consistent with glacier and marine records, and with transient climate model runs. This combined evidence implies that widely used pollen-based summer temperature reconstructions in the Mediterranean area are significantly biased by precipitation or other forcings such as early land use. Our interpretation can resolve the previous discrepancy between climate models and quantitative palaeotemperature records for millennial-scale Holocene summer temperature trends in the Mediterranean region. It also suggests that pollen-based evidence for cool mid-Holocene summers in other semi-arid to arid regions of the Northern Hemisphere may have to be reconsidered, with potential implications for global-scale reconstructions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Location of the Mediterranean proxy records discussed in the text.
Figure 2: Fossil chironomid assemblages and chironomid-inferred mean July air temperatures from the Gemini and Verdarolo sediment records.
Figure 3: Chironomid-inferred mean July air temperature for Gemini and Verdarolo compared with other palaeotemperature records.

Similar content being viewed by others

References

  1. Davis, B. A. S., Brewer, S., Stevenson, A. C. & Guiot, J. The temperature of Europe during the Holocene reconstructed from pollen data. Quat. Sci. Rev. 22, 1701–1716 (2003).

    Article  Google Scholar 

  2. Peyron, O. et al. Holocene seasonality changes in the central Mediterranean region reconstructed from the pollen sequences of Lake Accesa (Italy) and Tenaghi Philippon (Greece). Holocene 21, 131–146 (2011).

    Article  Google Scholar 

  3. Mauri, A., Davis, B. A. S., Collins, P. M. & Kaplan, J. O. The climate of Europe during the Holocene: a gridded pollen-based reconstruction and its multi-proxy evaluation. Quat. Sci. Rev. 112, 109–127 (2015).

    Article  Google Scholar 

  4. Bartlein, P. J. et al. Pollen-based continental climate reconstructions at 6 and 21 ka: a global synthesis. Clim. Dynam. 37, 775–802 (2011).

    Article  Google Scholar 

  5. Wanner, H. et al. Mid- to Late Holocene climate change: an overview. Quat. Sci. Rev. 27, 1791–1828 (2008).

    Article  Google Scholar 

  6. Renssen, H. et al. The spatial and temporal complexity of the Holocene thermal maximum. Nat. Geosci. 2, 410–413 (2009).

    Article  Google Scholar 

  7. Braconnot, P. et al. Evaluation of climate models using palaeoclimatic data. Nat. Clim. Change 2, 417–424 (2012).

    Article  Google Scholar 

  8. Fischer, N. & Jungclaus, J. H. Evolution of the seasonal temperature cycle in a transient Holocene simulation: orbital forcing and sea-ice. Clim. Past 7, 1139–1148 (2011).

    Article  Google Scholar 

  9. Davis, B. A. S. & Brewer, S. Orbital forcing and role of the latitudinal insolation/temperature gradient. Clim. Dynam. 32, 143–165 (2009).

    Article  Google Scholar 

  10. Liu, Z. et al. The Holocene temperature conundrum. Proc. Natl Acad. Sci. USA 111, E3501–E3505 (2014).

    Article  Google Scholar 

  11. Sala, O. E. et al. Biodiversity—Global biodiversity scenarios for the year 2100. Science 287, 1770–1774 (2000).

    Article  Google Scholar 

  12. Thuiller, W., Lavorel, S., Araujo, M. B., Sykes, M. T. & Prentice, I. C. Climate change threats to plant diversity in Europe. Proc. Natl Acad. Sci. USA 102, 8245–8250 (2005).

    Article  Google Scholar 

  13. Allen, H. D. Mediterranean Ecogeography (Pearson Education, 2001).

    Google Scholar 

  14. Thuiller, W. et al. Large-scale environmental correlates of forest tree distributions in Catalonia (NE Spain). Glob. Ecol. Biogeogr. 12, 313–325 (2003).

    Article  Google Scholar 

  15. Roberts, N. The Holocene: An Environmental History 2 edn (Blackwell, 1998).

    Google Scholar 

  16. Luterbacher, J. et al. in A Review of 2000 Years of Paleoclimatic Evidence in the Mediterranean (ed. Lionello, P.) 87–185 (Elsevier, 2012).

    Google Scholar 

  17. Giraudi, C., Magny, M., Zanchetta, G. & Drysdale, R. N. The Holocene climatic evolution of Mediterranean Italy: a review of the continental geological data. Holocene 21, 105–115 (2011).

    Article  Google Scholar 

  18. Abrantes, F. et al. The Climate of the Mediterranean Region—from the Past to the Future (ed. Lionello, P.) 1–86 (Elsevier, 2012).

    Google Scholar 

  19. Magny, M. et al. North-south palaeohydrological contrasts in the central Mediterranean during the Holocene: tentative synthesis and working hypotheses. Clim. Past 9, 2043–2071 (2013).

    Article  Google Scholar 

  20. Roberts, N., Brayshaw, D., Kuzucuoglu, C., Perez, R. & Sadori, L. The mid-Holocene climatic transition in the Mediterranean: causes and consequences. Holocene 21, 3–13 (2011).

    Article  Google Scholar 

  21. Cacho, I. et al. Variability of the western Mediterranean Sea surface temperature during the last 25,000 years and its connection with the Northern Hemisphere climatic changes. Paleoceanography 16, 40–52 (2001).

    Article  Google Scholar 

  22. Müller, P. J., Kirst, G., Ruhland, G., von Storch, I. & Rosell-Melé, A. Calibration of the alkenone paleotemperature index U37K′ based on core-tops from the eastern South Atlantic and the global ocean (60° N–60° S). Geochim. Cosmochim. Acta 62, 1757–1772 (1998).

    Article  Google Scholar 

  23. Emeis, K.-C. et al. Temperature and salinity variations of Mediterranean Sea surface waters over the last 16,000 years from records of planktonic stable oxygen isotopes and alkenone unsaturation ratios. Palaeogeogr. Palaeoclimatol. Palaeoecol. 158, 259–280 (2000).

    Article  Google Scholar 

  24. Heiri, O., Brooks, S. J., Birks, H. J. B. & Lotter, A. E. A 274-lake calibration data-set and inference model for chironomid-based summer air temperature reconstruction in Europe. Quat. Sci. Rev. 30, 3445–3456 (2011).

    Article  Google Scholar 

  25. Eggermont, H. & Heiri, O. The chironomid-temperature relationship: expression in nature and palaeoenvironmental implications. Biol. Rev. 87, 430–456 (2012).

    Article  Google Scholar 

  26. Brooks, S. J. Fossil midges (Diptera: Chironomidae) as palaeoclimatic indicators for the Eurasian region. Quat. Sci. Rev. 25, 1894–1910 (2006).

    Article  Google Scholar 

  27. Moreno, A. et al. A compilation of Western European terrestrial records 60–8 ka BP: towards an understanding of latitudinal climatic gradients. Quat. Sci. Rev. 106, 167–185 (2014).

    Article  Google Scholar 

  28. Tóth, M. et al. Chironomid-inferred Holocene temperature changes in the South Carpathians (Romania). Holocene 25, 569–582 (2015).

    Article  Google Scholar 

  29. Heiri, O. et al. Validation of climate model-inferred regional temperature change for late- glacial Europe. Nat. Commun. 5, 4914 (2014).

    Article  Google Scholar 

  30. Walker, I. R., Wilson, S. E. & Smol, J. P. Chironomidae (Diptera): quantitative palaeosalinity indicators for lakes of western Canada. Can. J. Fish. Aquat. Sci. 52, 950–960 (1995).

    Article  Google Scholar 

  31. Heiri, O. Within-lake variability of subfossil chironomid assemblages in shallow Norwegian lakes. J. Paleolimnol. 32, 67–84 (2004).

    Article  Google Scholar 

  32. Lotter, A. F., Birks, H. J. B., Hofmann, W. & Marchetto, A. Modern diatom, cladocera, chironomid, and chrysophyte cyst assemblages as quantitative indicators for the reconstruction of past environmental conditions in the Alps. I. Climate. J. Paleolimnol. 18, 395–420 (1997).

    Article  Google Scholar 

  33. Tinner, W. & Theurillat, J. P. Uppermost limit, extent, and fluctuations of the timberline and treeline ecocline in the Swiss Central Alps during the past 11,500 years. Arct. Antarct. Alp. Res. 35, 158–169 (2003).

    Article  Google Scholar 

  34. Ilyashuk, E. A., Koinig, K. A., Heiri, O., Ilyashuk, B. P. & Psenner, R. Holocene temperature variations at a high-altitude site in the Eastern Alps: a chironomid record from Schwarzsee ob Sölden, Austria. Quat. Sci. Rev. 30, 176–191 (2011).

    Article  Google Scholar 

  35. Heiri, O., Tinner, W. & Lotter, A. F. Evidence for cooler European summers during periods of changing meltwater flux to the North Atlantic. Proc. Natl Acad. Sci. USA 101, 15285–15288 (2004).

    Article  Google Scholar 

  36. Liu, Z. et al. Transient simulation of last deglaciation with a new mechanism for Bølling–Allerød warming. Science 325, 310–314 (2009).

    Article  Google Scholar 

  37. Liu, Z. et al. Chinese cave records and the East Asia Summer Monsoon. Quat. Sci. Rev. 83, 115–128 (2014).

    Article  Google Scholar 

  38. Colombaroli, D., Marchetto, A. & Tinner, W. Long-term interactions between Mediterranean climate, vegetation and fire regime at Lago di Massaciuccoli (Tuscany, Italy). J. Ecol. 95, 755–770 (2007).

    Article  Google Scholar 

  39. Tinner, W. et al. Holocene environmental and climatic changes at Gorgo Basso, a coastal lake in southern Sicily, Italy. Quat. Sci. Rev. 28, 1498–1510 (2009).

    Article  Google Scholar 

  40. Drescher-Schneider, R. et al. Vegetation history, climate and human impact over the last 15,000 years at Lago dell’Accesa (Tuscany, Central Italy). Vegetat. Hist. Archaeobot. 16, 279–299 (2007).

    Article  Google Scholar 

  41. Tinner, W. et al. The past ecology of Abies alba provides new perspectives on future responses of silver fir forests to global warming. Ecol. Monogr. 83, 419–439 (2013).

    Article  Google Scholar 

  42. Henne, P. D. et al. Impacts of changing climate and land use on vegetation dynamics in a Mediterranean ecosystem: Insights from paleoecology and dynamic modeling. Landsc. Ecol. 28, 819–833 (2013).

    Article  Google Scholar 

  43. Fall, P. L. Timberline fluctuations and late Quaternary paleoclimates in the Southern Rocky Mountains, Colorado. Geol. Soc. Am. Bull. 109, 1306–1320 (1997).

    Article  Google Scholar 

  44. Mauri, A., Davis, B. A. S., Collins, P. M. & Kaplan, J. O. The influence of atmospheric circulation on the mid-Holocene climate of Europe: a data-model comparison. Clim. Past 10, 1925–1938 (2014).

    Article  Google Scholar 

  45. Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observations – the CRU TS3.10 Dataset. Int. J. Climatol. 34, 623–642 (2014).

    Article  Google Scholar 

  46. Berger, A. & Loutre, M. F. Insolation values for the climate of the last 10 million years. Quat. Sci. Rev. 10, 297–317 (1991).

    Article  Google Scholar 

  47. Reimer, P. J. et al. IntCal13 and MARINE13 radiocarbon age calibration curves 0-50000 years cal BP . Radiocarbon 55, 1869–1887 (2013).

    Article  Google Scholar 

  48. Heegaard, E., Birks, H. J. B. & Telford, R. J. Relationships between calibrated ages and depth in stratigraphical sequences: an estimation procedure by mixed-effect regression. Holocene 15, 612–618 (2005).

    Article  Google Scholar 

  49. Brooks, S. J., Langdon, P. G. & Heiri, O. The identification and use of Palaearctic Chironomidae larvae in palaeoecology. Quat. Res. Assoc. Tech. Guide 10, 1–276 (2007).

    Google Scholar 

  50. Quinlan, R. & Smol, J. P. Setting minimum head capsule abundance and taxa deletion criteria in chironomid-based inference models. J. Paleolimnol. 26, 327–342 (2001).

    Article  Google Scholar 

  51. Larocque, I. How many chironomid head capsules are enough? A statistical approach to determine sample size for palaeoclimatic reconstructions. Palaeogeogr. Palaeoclimatol. Palaeoecol. 172, 133–142 (2001).

    Article  Google Scholar 

  52. Heiri, O. & Lotter, A. F. Effect of low count sums on quantitative environmental reconstructions: an example using subfossil chironomids. J. Paleolimnol. 26, 343–350 (2001).

    Article  Google Scholar 

  53. Larocque, I., Grosjean, M., Heiri, O., Bigler, C. & Blass, A. Comparison between chironomid-inferred July temperatures and meteorological data AD 1850–2001 from varved Lake Silvaplana, Switzerland. J. Paleolimnol. 41, 329–342 (2009).

    Article  Google Scholar 

  54. Larocque-Tobler, I., Filipiak, J., Tylmann, W., Bonk, A. & Grosjean, M. Comparison between chironomid-inferred mean-August temperature from varved Lake Zabinskie (Poland) and instrumental data since 1896 AD . Quat. Sci. Rev. 111, 35–50 (2015).

    Article  Google Scholar 

  55. Birks, H. J. B., Line, J. M., Juggins, S., Stevenson, A. C. & ter Braak, C. J. F. Diatoms and pH reconstruction. Phil. Trans. R. Soc. Lond. B 327, 263–278 (1990).

    Article  Google Scholar 

  56. Francis, D. R., Wolfe, A. P., Walker, I. R. & Miller, G. H. Interglacial and Holocene temperature reconstructions based on midge remains in sediments of two lakes from Baffin Island, Nunavut, Arctic Canada. Palaeogeogr. Palaeoclimatol. Palaeoecol. 236, 107–124 (2006).

    Article  Google Scholar 

  57. Muñoz Sobrino, C. et al. New data on the Lateglacial period of SW Europe: a high resolution multiproxy record from Laguna de la Roya (NW Iberia). Quat. Sci. Rev. 80, 58–77 (2013).

    Article  Google Scholar 

  58. van Asch, N. et al. Rapid climate change during the Weichselian Lateglacial in Ireland: chironomid-inferred summer temperatures from Fiddaun, Co. Galway. Palaeogeogr. Palaeoclimatol. Palaeoecol. 315–316, 1–11 (2011).

    Google Scholar 

  59. Heiri, O., Lotter, A. F., Hausmann, S. & Kienast, F. A chironomid-based Holocene summer air temperature reconstruction from the Swiss Alps. Holocene 13, 477–484 (2003).

    Article  Google Scholar 

  60. Birks, H. J. B. Numerical tools in palaeolimnology—progress, potentialities, and problems. J. Paleolimnol. 20, 307–332 (1998).

    Article  Google Scholar 

  61. Berger, A. Orbital Variations and Insolation Database IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series no. 92-007 (NOAA/NGDC Paleoclimatology Program, 1992).

    Google Scholar 

  62. Gonzalez-Rouco, J. F., Beltrami, H., Zorita, E. & von Storch, H. Simulation and inversion of borehole temperature profiles in surrogate climates: spatial distribution and surface coupling. Geophys. Res. Lett. 33, L01703 (2006).

    Article  Google Scholar 

  63. Hofer, D., Raible, C. C. & Stocker, T. F. Variations of the Atlantic meridional overturning circulation in control and transient simulations of the last millennium. Clim. Past 7, 133–150 (2011).

    Article  Google Scholar 

  64. Jungclaus, J. H. et al. Climate and carbon-cycle variability over the last millennium. Clim. Past 6, 723–737 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

Gemini has been cored with permission of the Parco Nazionale Appenino Tosco-Emiliano and Verdarolo with permission of the Parco Regionale Valli del Cedra e del Parma. This study has been supported by the Swiss National Science Foundation (SNF projects PP00P2-114886, 200021_ 134616) and O.H. by the European Research Council (ERC) under the European Union’s Seventh Framework Programme (FP/2007–2013) (Starting Grant Project no. 239858).

Author information

Authors and Affiliations

Authors

Contributions

S.S., O.H. and W.T. conceived the research; S.S. analysed the microfossil data; S.S., O.H., J.F., F.J., H.R. and S.B. designed numerical analyses and S.S., O.H. and F.J. implemented them; all authors contributed to the final interpretation and writing of the manuscript with major contributions by S.S., O.H. and W.T.

Corresponding author

Correspondence to Oliver Heiri.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2135 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samartin, S., Heiri, O., Joos, F. et al. Warm Mediterranean mid-Holocene summers inferred from fossil midge assemblages. Nature Geosci 10, 207–212 (2017). https://doi.org/10.1038/ngeo2891

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2891

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing