Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water

Abstract

Atmospheric loss has controlled the history of Martian habitability, removing most of the planet’s initial water through atomic hydrogen and oxygen escape from the upper atmosphere to space. In standard models, H and O escape in a stoichiometric 2:1 ratio because H reaches the upper atmosphere via long-lived molecular hydrogen, whose abundance is regulated by a photochemical feedback sensitive to atmospheric oxygen content. The relatively constant escape rates these models predict are inconsistent with known H escape variations of more than an order of magnitude on seasonal timescales, variation that requires escaping H to have a source other than H2. The best candidate source is high-altitude water, detected by the Mars Express spacecraft in seasonally variable concentrations. Here we use a one-dimensional time-dependent photochemical model to show that the introduction of high-altitude water can produce a large increase in the H escape rate on a timescale of weeks, quantitatively linking these observations. This H escape pathway produces prompt H loss that is not immediately balanced by O escape, influencing the oxidation state of the atmosphere for millions of years. Martian atmospheric water loss may be dominated by escape via this pathway, which may therefore potentially control the planet’s atmospheric chemistry. Our findings highlight the influence that seasonal atmospheric variability can have on planetary evolution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Equilibrium photochemical model output.
Figure 2: Time response of the atmosphere to water parcel introduction and subsequent removal.
Figure 3: Sensitivity of atmospheric response to altitude and magnitude of the water parcel injected.

Similar content being viewed by others

References

  1. Jakosky, B. M. et al. The Mars Atmosphere and Volatile Evolution (MAVEN) mission. Space Sci. Rev. 3–48 (2015).

  2. Owen, T., Maillard, J. P., de Bergh, C. & Lutz, B. L. Deuterium on Mars—the abundance of HDO and the value of D/H. Science 240, 1767–1770 (1988).

    Article  Google Scholar 

  3. Mahaffy, P. R. et al. The imprint of atmospheric evolution in the D/H of Hesperian clay minerals on Mars. Science 347, 412–414 (2014).

    Article  Google Scholar 

  4. Villanueva, G. L. et al. Strong water isotopic anomalies in the Martian atmosphere: probing current and ancient reservoirs. Science 348, 218–221 (2015).

    Article  Google Scholar 

  5. Krasnopolsky, V. A. Variations of the HDO/H2O ratio in the Martian atmosphere and loss of water from Mars. Icarus 257, 377–386 (2015).

    Article  Google Scholar 

  6. McElroy, M. B. & Donahue, T. M. Stability of the Martian atmosphere. Science 177, 986–988 (1972).

    Article  Google Scholar 

  7. Parkinson, T. D. & Hunten, D. M. Spectroscopy and aeronomy of O2 on Mars. J. Atmos. Sci. 29, 1380–1390 (1972).

    Article  Google Scholar 

  8. Nair, H., Allen, M., Anbar, A. D., Yung, Y. L. & Clancy, R. T. A photochemical model of the Martian atmosphere. Icarus 111, 124–150 (1994).

    Article  Google Scholar 

  9. Zahnle, K., Haberle, R. M., Catling, D. C. & Kasting, J. F. Photochemical instability of the ancient Martian atmosphere. J. Geophys. Res. 113, 11004 (2008).

    Article  Google Scholar 

  10. Lefèvre, F. et al. Heterogeneous chemistry in the atmosphere of Mars. Nature 454, 971–975 (2008).

    Article  Google Scholar 

  11. Krasnopolsky, V. A. Solar activity variations of thermospheric temperatures on Mars and a problem of CO in the lower atmosphere. Icarus 207, 638–647 (2010).

    Article  Google Scholar 

  12. Krasnopolsky, V. A. & Feldman, P. D. Detection of molecular hydrogen in the atmosphere of Mars. Science 294, 1914–1917 (2001).

    Article  Google Scholar 

  13. Krasnopolsky, V. A. Mars’ upper atmosphere and ionosphere at low, medium, and high solar activities: implications for evolution of water. J. Geophys. Res. 107, 5128 (2002).

    Article  Google Scholar 

  14. Krasnopolsky, V. A. Photochemistry of the Martian atmosphere: seasonal, latitudinal, and diurnal variations. Icarus 185, 153–170 (2006).

    Article  Google Scholar 

  15. Liu, S. & Donahue, T. The regulation of hydrogen and oxygen escape from Mars. Icarus 28, 231–246 (1976).

    Article  Google Scholar 

  16. Lammer, H. et al. Loss of water from Mars. Icarus 165, 9–25 (2003).

    Article  Google Scholar 

  17. Carr, M. H. & Head, J. W. Martian surface/near-surface water inventory: sources, sinks, and changes with time. Geophys. Res. Lett. 42, 726–732 (2015).

    Article  Google Scholar 

  18. Chaffin, M. S. et al. Unexpected variability of Martian hydrogen escape. Geophys. Res. Lett. 41, 314–320 (2014).

    Article  Google Scholar 

  19. Clarke, J. T. et al. A rapid decrease of the hydrogen corona of Mars. Geophys. Res. Lett. 41, 8013–8020 (2014).

    Article  Google Scholar 

  20. Bhattacharyya, D., Clarke, J. T., Bertaux, J.-L., Chaufray, J-Y. & Mayyasi, M. A strong seasonal dependence in the Martian hydrogen exosphere. Geophys. Res. Lett. 42, 8678–8685 (2015).

    Article  Google Scholar 

  21. Chaufray, J.-Y. et al. Variability of the hydrogen in the Martian upper atmosphere as simulated by a 3D atmosphere-exosphere coupling. Icarus 245, 282–294 (2015).

    Article  Google Scholar 

  22. Maltagliati, L. et al. Evidence of water vapor in excess of saturation in the atmosphere of Mars. Science 333, 1868–1871 (2011).

    Article  Google Scholar 

  23. Maltagliati, L. et al. Annual survey of water vapor vertical distribution and water-aerosol coupling in the Martian atmosphere observed by SPICAM/MEx solar occultations. Icarus 223, 942–962 (2013).

    Article  Google Scholar 

  24. Fox, J. L. The chemistry of protonated species in the Martian ionosphere. Icarus 252, 366–392 (2015).

    Article  Google Scholar 

  25. Spiga, A., Faure, J., Madeleine, J.-B., Maattanen, A. & Forget, F. Rocket dust storms and detached dust layers in the Martian atmosphere. J. Geophys. Res. 118, 746–767 (2013).

    Article  Google Scholar 

  26. Rafkin, S. C. The potential importance of non-local, deep transport on the energetics, momentum, chemistry, and aerosol distributions in the atmospheres of Earth, Mars, and Titan. Planet. Space Sci. 60, 147–154 (2012).

    Article  Google Scholar 

  27. Navarro, T. et al. Global climate modeling of the Martian water cycle with improved microphysics and radiatively active water ice clouds. J. Geophys. Res. 119, 1479–1495 (2014).

    Article  Google Scholar 

  28. McElroy, M. B., Kong, T. Y. & Yung, Y. L. Photochemistry and evolution of Mars atmosphere: a Viking perspective. J. Geophys. Res. 82, 4379–4388 (1977).

    Article  Google Scholar 

  29. Fox, J. L. & Hać, A. B. Photochemical escape of oxygen from Mars: a comparison of the exobase approximation to a Monte Carlo method. Icarus 204, 527–544 (2009).

    Article  Google Scholar 

  30. Vandaele, A. et al. Science objectives and performances of NOMAD, a spectrometer suite for the ExoMars TGO mission. Planet. Space Sci. 119, 233–248 (2015).

    Article  Google Scholar 

  31. Korablev, O. I. et al. ACS experiment for atmospheric studies on ExoMars-2016 orbiter. Solar Syst. Res. 49, 529–537 (2015).

    Article  Google Scholar 

  32. Laskar, J. et al. Long term evolution and chaotic diffusion of the insolation quantities of Mars. Icarus 170, 343–364 (2004).

    Article  Google Scholar 

  33. Anderson, D. E. Jr & Hord, C. W. Mariner 6 and 7 ultraviolet spectrometer experiment: analysis of hydrogen Lyman-alpha data. J. Geophys. Res. 76, 6666–6673 (1971).

    Article  Google Scholar 

  34. Chaufray, J. Y., Bertaux, J. L., Leblanc, F. & Quémerais, E. Observation of the hydrogen corona with SPICAM on Mars Express. Icarus 195, 598–613 (2008).

    Article  Google Scholar 

  35. Ramirez, R. M. et al. Warming early Mars with CO2 and H2 . Nat. Geosci. 7, 59–63 (2014).

    Article  Google Scholar 

  36. Hunten, D. M. The escape of light gases from planetary atmospheres. J. Atmos. Sci. 30, 1481–1494 (1973).

    Article  Google Scholar 

  37. Krasnopolsky, V. A. Photochemistry of the Martian atmosphere (mean conditions). Icarus 101, 313–332 (1993).

    Article  Google Scholar 

  38. Deighan, J. The Effect of an Ozone Layer on Ancient Mars PhD thesis, Univ. Virginia (2012); http://libra.virginia.edu/catalog/libra-oa:2577

  39. Sander, S. P. et al. Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies Evaluation Number 17 (2011).

  40. Lu, Z., Chang, Y. C., Yin, Q.-Z., Ng, C. Y. & Jackson, W. M. Evidence for direct molecular oxygen production in CO2 photodissociation. Science 346, 61–64 (2014).

    Article  Google Scholar 

  41. Huebner, W. & Mukherjee, J. Photoionization and photodissociation rates in solar and blackbody radiation fields. Planet. Space Sci. 106, 11–45 (2015).

    Article  Google Scholar 

  42. Washburn, E. W. The vapor pressure of ice and of water below the freezing point. Mon. Weath. Rev. 52, 488–490 (1924).

    Article  Google Scholar 

  43. Matta, M., Withers, P. & Mendillo, M. The composition of Mars’ topside ionosphere: effects of hydrogen. J. Geophys. Res. 118, 2681–2693 (2013).

    Article  Google Scholar 

  44. Woods, T. N. et al. Solar irradiance reference spectra (SIRS) for the 2008 whole heliosphere interval (WHI). Geophys. Res. Lett. 36, L01101 (2009).

    Article  Google Scholar 

  45. Bezanson, J., Edelman, A., Karpinski, S. & Shah, V. B. Julia: a fresh approach to numerical computing. ArXiv e-prints (2014).

  46. Damian, V., Sandu, A., Damian, M., Potra, F. & Carmichael, G. R. The kinetic preprocessor KPP-a software environment for solving chemical kinetics. Comput. Chem. Eng. 26, 1567–1579 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The photochemical model was developed with support from NASA NESSF NNX11AP49H, NASA MDAP NNX14AM20G, and a NASA Astrobiology Institute Early Career Collaboration Award.

Author information

Authors and Affiliations

Authors

Contributions

M.S.C. developed the model and performed the analysis. J.D. oversaw development of and contributed to the model. All authors contributed to interpretation of the results and their presentation.

Corresponding author

Correspondence to M. S. Chaffin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 444 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chaffin, M., Deighan, J., Schneider, N. et al. Elevated atmospheric escape of atomic hydrogen from Mars induced by high-altitude water. Nature Geosci 10, 174–178 (2017). https://doi.org/10.1038/ngeo2887

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2887

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing