Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed

Abstract

The terrestrial biosphere absorbs about 20% of fossil-fuel CO2 emissions. The overall magnitude of this sink is constrained by the difference between emissions, the rate of increase in atmospheric CO2 concentrations, and the ocean sink. However, the land sink is actually composed of two largely counteracting fluxes that are poorly quantified: fluxes from land-use change and CO2 uptake by terrestrial ecosystems. Dynamic global vegetation model simulations suggest that CO2 emissions from land-use change have been substantially underestimated because processes such as tree harvesting and land clearing from shifting cultivation have not been considered. As the overall terrestrial sink is constrained, a larger net flux as a result of land-use change implies that terrestrial uptake of CO2 is also larger, and that terrestrial ecosystems might have greater potential to sequester carbon in the future. Consequently, reforestation projects and efforts to avoid further deforestation could represent important mitigation pathways, with co-benefits for biodiversity. It is unclear whether a larger land carbon sink can be reconciled with our current understanding of terrestrial carbon cycling. Our possible underestimation of the historical residual terrestrial carbon sink adds further uncertainty to our capacity to predict the future of terrestrial carbon uptake and losses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Difference in LULCC emission flux (ΔFLULCC) due to individual processes.
Figure 2: Response ratio of cumulative FLULCC,1 and FLULCC,0.
Figure 3: Net and gross forest/natural land changes in different LULCC data sets.

References

  1. 1

    Le Quere, C. et al. Global carbon budget 2015. Earth Syst. Sci. Data 7, 349–396 (2015).

    Article  Google Scholar 

  2. 2

    Sitch, S. et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences 12, 653–679 (2015).

    Article  Google Scholar 

  3. 3

    Ciais, P. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 6 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  4. 4

    Pongratz, J., Reick, C., Houghton, R. A. & House, J. I. Terminology as a key uncertainty in net land use flux estimates. Earth Syst. Dyn. 5, 177–195 (2013).

    Article  Google Scholar 

  5. 5

    Gasser, T. & Ciais, P. A theoretical framework for the net land-to-atmosphere CO2 flux and its implications in the definitions of “emissions from land-use change”. Earth Syst. Dyn. 4, 171–186 (2013).

    Article  Google Scholar 

  6. 6

    Houghton, R. A. et al. Carbon emissions from land use and land-cover change. Biogeosciences 9, 5125–5142 (2012).

    Article  Google Scholar 

  7. 7

    Hurtt, G. C. et al. Harmonization of land-use scenarios for the period 1500–2100, 600 years of global gridded annual land-use transitions, wood harvest, and resulting secondary lands. Climatic Change 109, 117–161 (2011).

    Article  Google Scholar 

  8. 8

    Fuchs, R., Herold, M., Verburg, P. H., Clevers, J. G. P. W. & Eberle, J. Gross changes in reconstructions of historic land cover/use for Europe between 1900 and 2010. Glob. Change Biol. 21, 299–313 (2015).

    Article  Google Scholar 

  9. 9

    Hansen, M. C., Stehman, S. V. & Potapov, P. V. Quantification of global gross forest cover loss. Proc. Natl Acad. Sci. USA 107, 8650–8655 (2010).

    Article  Google Scholar 

  10. 10

    Poorter, L. et al. Biomass resilience of Neotropical secondary forests. Nature 530, 211–214 (2016).

    Article  Google Scholar 

  11. 11

    van Vliet, N. et al. Trends, drivers and impacts of changes in swidden cultivation in tropical forest-agriculture frontiers: a global assessment. Glob. Environ. Change 22, 418–429 (2012).

    Article  Google Scholar 

  12. 12

    Grace, J., Mitchard, E. & Gloor, E. Perturbations in the carbon budget of the tropics. Glob. Change Biol. 20, 3238–3255 (2014).

    Article  Google Scholar 

  13. 13

    Erb, K.-H. et al. Land management: data availability and process understanding for global change studies. Glob. Change Biol. 23, 512–533 (2016).

    Article  Google Scholar 

  14. 14

    Hurtt, G. C. et al. The underpinnings of land-use history: three centuries of global gridded land-use transitions, wood-harvest activity, and resulting secondary lands. Glob. Change Biol. 12, 1208–1229 (2006).

    Article  Google Scholar 

  15. 15

    Noormets, A. et al. Effects of forest management on productivity and carbon sequestration: a review and hypothesis. Forest Ecol. Manage. 355, 124–140 (2015).

    Article  Google Scholar 

  16. 16

    Pugh, T. A. M. et al. Carbon emission from land-use change is substantially enhanced by agricultural management. Environ. Res. Lett. 10, 124008 (2015).

    Article  Google Scholar 

  17. 17

    Guo, L. B. & Gifford, R. M. Soil carbon stocks and land use change: a meta analysis. Glob. Change Biol. 8, 345–360 (2002).

    Article  Google Scholar 

  18. 18

    Powlson, D. S. et al. Limited potential of no-till agriculture for climate change mitigation. Nat. Clim. Change 4, 678–683 (2014).

    Article  Google Scholar 

  19. 19

    Shevliakova, E. et al. Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink. Glob. Biogeochem. Cycles 23, GB2022 (2009).

    Article  Google Scholar 

  20. 20

    Stocker, B. D., Feissli, F., Strassmann, K. M., Spahni, R. & Joos, F. Past and future carbon fluxes from land use change, shifting cultivation and wood harvest. Tellus B 66, 23188 (2014).

    Article  Google Scholar 

  21. 21

    Wilkenskjeld, S., Kloster, S., Pongratz, J., Raddatz, T. & Reick, C. H. Comparing the influence of net and gross anthropogenic land-use and land-cover changes on the carbon cycle in the MPI-ESM. Biogeosciences 11, 4817–4828 (2014).

    Article  Google Scholar 

  22. 22

    Friend, A. D. et al. Carbon residence time dominates uncertainty in terrestrial vegetation responses to future climate and atmospheric CO2 . Proc. Natl Acad. Sci. USA 111, 3280–3285 (2014).

    Article  Google Scholar 

  23. 23

    Hansis, E., Davis, S. J. & Pongratz, J. Relevance of methodological choices for accounting of land use change carbon fluxes. Glob. Biogeochem. Cycles 29, 1230–1246 (2015).

    Article  Google Scholar 

  24. 24

    Pan, Y. et al. A Large and persistent carbon sink in the world's forests. Science 333, 988–993 (2011).

    Article  Google Scholar 

  25. 25

    Ahlström, A. et al. The dominant role of semi-arid ecosystems in the trend and variability of the land CO2 sink. Science 348, 895–899 (2015).

    Article  Google Scholar 

  26. 26

    Erb, K.-H. et al. Bias in attributing of forest carbon sinks. Nat. Clim. Change 3, 854–856 (2013).

    Article  Google Scholar 

  27. 27

    Schimel, D., Stephens, B. B. & Fisher, J. B. Effect of increasing CO2 on the terrestrial carbon cycle. Proc. Natl Acad. Sci. USA 112, 436–441 (2015).

    Article  Google Scholar 

  28. 28

    Ehlers, I. et al. Detecting long-term metabolic shifts using isotopomers: CO2-driven suppression of photorespiration in C-3 plants over the 20th century. Proc. Natl Acad. Sci. USA 112, 15585–15590 (2015).

    Google Scholar 

  29. 29

    Sun, Y. et al. Impact of mesophyll diffusion on estimated global land CO2 fertilization. Proc. Natl Acad. Sci. USA 111, 15774–15779 (2014).

    Article  Google Scholar 

  30. 30

    Welp, L. R. et al. Interannual variability in the oxygen isotopes of atmospheric CO2 driven by El Niño. Nature 477, 579–582 (2011).

    Article  Google Scholar 

  31. 31

    Ciais, P. et al. Large inert carbon pool in the terrestrial biosphere during the Last Glacial Maximum. Nat. Geosci. 5, 74–79 (2012).

    Article  Google Scholar 

  32. 32

    Beer, C. et al. Terrestrial gross carbon dioxide uptake: global distribution and covariation with climate. Science 329, 834–838 (2010).

    Article  Google Scholar 

  33. 33

    McMahon, S. M., Geoffrey G Parker, and Dawn R Miller . 2010. Evidence for a recent increase in forest growth. Proc. Natl Acad. Sci. USA 107, 3611–3615 (2010).

    Article  Google Scholar 

  34. 34

    van der Sleen, P. et al. No growth stimulation of tropical trees by 150 years of CO2 fertilization but water-use efficiency increased. Nat. Geosci. 8, 24–28 (2015).

    Article  Google Scholar 

  35. 35

    Pugh, T. A. M., Muller, C., Arneth, A., Haverd, V. & Smith, B. Key knowledge and data gaps in modelling the influence of CO2 concentration on the terrestrial carbon sink. J. Plant Phys. 203, 3–15 (2016).

    Article  Google Scholar 

  36. 36

    Raymond, P. A. et al. Global carbon dioxide emissions from inland waters. Nature 503, 355–359 (2013).

    Article  Google Scholar 

  37. 37

    Regnier, P. et al. Anthropogenic perturbation of the carbon fluxes from land to ocean. Nat. Geosci. 6, 597–607 (2013).

    Article  Google Scholar 

  38. 38

    Prestele, R. et al. Hotspots of uncertainty in land use and land cover change projections: a global scale model comparison. Glob. Change Biol. 22, 3967–3983 (2016).

    Article  Google Scholar 

  39. 39

    Bais, A. L. S., Lauk, C., Kastner, T. & Erb, K. Global patterns and trends of wood harvest and use between 1990 and 2010. Ecol. Econ. 119, 326–337 (2015).

    Article  Google Scholar 

  40. 40

    McGrath, M. J. et al. Reconstructing European forest management from 1600 to 2010. Biogeosciences 12, 4291–4316 (2015).

    Article  Google Scholar 

  41. 41

    Richter, D. D. & Houghton, R. A. Gross CO2 fluxes from land-use change: implications for reducing global emissions and increasing sinks. Carbon Manage. 2, 41–47 (2011).

    Article  Google Scholar 

  42. 42

    Bayer, A. D., Lindeskog, M., Pugh, T. A. M., Fuchs, R. & Arneth, A. Uncertainties in the land use flux resulting from land use change reconstructions and gross land transitions. Earth Syst. Dyn. Discuss. http://dx.doi.org/10.5194/esd-2016-24 (2016).

  43. 43

    Korner, C. Slow in, rapid out — carbon flux studies and Kyoto targets. Science 300, 1242–1243 (2003).

    Article  Google Scholar 

  44. 44

    Krause, A., Pugh, T. A. M., Bayer, A. D., Lindeskog, M. & Arneth, A. Impacts of land-use history on the recovery of ecosystems after agricultural abandonment. Earth Syst. Dyn. 7, 745–766 (2016).

    Article  Google Scholar 

  45. 45

    Zaehle, S., Jones, C. D., Houlton, B., Lamarque, J.-F. & Robertson, E. Nitrogen availability reduces CMIP5 projections of twenty-first-century land carbon uptake. J. Clim. 28, 2494–2511 (2015).

    Article  Google Scholar 

  46. 46

    Seidl, R., Schelhaas, M. J., Rammer, W. & Verkerk, P. J. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Change 4, 806–810 (2014).

    Article  Google Scholar 

  47. 47

    Hantson, S. et al. The status and challenge of global fire modelling. Biogeosciences 13, 3359–3375 (2016).

    Article  Google Scholar 

  48. 48

    Running, S. W. Ecosystem disturbance, carbon, and climate. Science 321, 652–653 (2008).

    Article  Google Scholar 

  49. 49

    Galik, C. S., Murray, B. C., Mitchell, S. & Cottle, P. Alternative approaches for addressing non-permanence in carbon projects: an application to afforestation and reforestation under the Clean Development Mechanism. Mit. Adapt. Strat. Glob. Change 21, 101–118 (2016).

    Article  Google Scholar 

  50. 50

    Friess, D. A., Phelps, J., Garmendia, E. & Gomez-Baggethun, E. Payments for Ecosystem Services (PES) in the face of external biophysical stressors. Glob. Environ. Change 30, 31–42 (2015).

    Article  Google Scholar 

  51. 51

    Klein Goldewijk, L., Beusen, A., van Drecht, G. & de Vos, M. The HYDE 3.1 spatially explicit database of human-induced global land use change over the past 12,000 years. Glob. Ecol. Biogeogr. 20, 73–86 (2011).

    Article  Google Scholar 

  52. 52

    Clark, D. B. et al. The Joint UK Land Environment Simulator (JULES), model description — Part 2: carbon fluxes and vegetation dynamics. Geosci. Model Dev. 4, 701–722 (2011).

    Article  Google Scholar 

  53. 53

    Smith, B. et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences 11, 2027–2054 (2014).

    Article  Google Scholar 

  54. 54

    Jones, P. & Harris, I. University of East Anglia Climatic Research Unit, CRU TS3. 21: Climatic Research Unit (CRU) Time-Series (TS) Version 3.21 of High Resolution Gridded Data of Month-by-Month Variation in Climate (Jan. 1901—Dec. 2012). (NCAS, BADC, 2013).

    Google Scholar 

  55. 55

    Cosby, B. J., Hornberger, G. M., Clapp, R. B. & Ginn, T. R. A statistical exploration of the relationships of soil-moisture characteristics to the physical-properties of soils. Water Resour. Res. 20, 682–690 (1984).

    Article  Google Scholar 

  56. 56

    Bondeau, A. et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 13, 679–706 (2007).

    Article  Google Scholar 

  57. 57

    Fader, M., von Bloh, W., Shi, S., Bondeau, A. & Cramer, W. Modelling Mediterranean agro-ecosystems by including agricultural trees in the LPJmL model. Geosci. Model Dev. 8, 3545–3561 (2015).

    Article  Google Scholar 

  58. 58

    Waha, K., van Bussel, L. G. J., Müller, C. & Bondeau, A. Climate-driven simulation of global crop sowing dates. Glob. Ecol. Biogeogr. 12, 247–259 (2012).

    Article  Google Scholar 

  59. 59

    Stocker, B. D. et al. Multiple greenhouse-gas feedbacks from the land biosphere under future climate change scenarios. Nat. Clim. Change 3, 666–672 (2013).

    Article  Google Scholar 

  60. 60

    Zaehle, S., Ciais, P., Friend, A. D. & Prieur, V. Carbon benefits of anthropogenic reactive nitrogen offset by nitrous oxide emissions. Nat. Geosci. 4, 601–605 (2011).

    Article  Google Scholar 

  61. 61

    McGuire, A. D. et al. Carbon balance of the terrestrial biosphere in the twentieth century: analysis of CO2, climate and land use effects with four process-based ecosystem models. Glob. Biogeochem. Cycles 15, 183–206 (2001).

    Article  Google Scholar 

  62. 62

    Krinner, G., Ciais, P., Viovy, N. & Friedlingstein, P. A simple parameterization of nitrogen limitation on primary productivity for global vegetation models. Biogeosci. Discuss. 2, 1243–1282 (2005).

    Article  Google Scholar 

  63. 63

    Gasser, T. et al. The compact Earth system model OSCAR v2.2: description and first results. Geosc. Model Dev. http://dx.doi.org/10.5194/gmd-2016-149 (2016).

  64. 64

    Houghton, R. A. & Hackler, J. L. Carbon flux to the atmosphere from land-use changes: 1850 to 1990. (Carbon Dioxide Information Analysis Center, 2001).

  65. 65

    Arora, V. K. et al. Carbon-concentration and carbon–climate feedbacks in CMIP5 Earth system models. J. Clim. 26, 5289–5314 (2013).

    Article  Google Scholar 

  66. 66

    Mason, E. J., Yeh, S. & Skog, K. E. Timing of carbon emissions from global forest clearance. Nat. Clim. Change 2, 682–685 (2012).

    Article  Google Scholar 

  67. 67

    Kato, E., Kinoshita, T., Ito, A., Kawamiya, M. & Yamagata, Y. Evaluation of spatially explicit emission scenario of land-use change and biomass burning using a process-based biogeochemical model. J. Land Use Sc. 8, 104–122 (2013).

    Article  Google Scholar 

  68. 68

    Global Forest Resources Assessment 2010 (FAO, 2010).

  69. 69

    Hansen, M. C. et al. High-resolution global maps of 21st-century forest cover change. Science 342, 850–853 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

A.A., A.D.B. and T.A.M.P. acknowledge support from EU FP7 grants LUC4C (grant no. 603542), OPERAS (grant no. 308393), and the Helmholtz Association in its ATMO programme and its impulse and networking fund. M.F., W.L., C.Y. and S.S. were also funded by LUC4C. J.P. and J.E.M.S.N. were supported by the German Research Foundation's Emmy Noether Programme (PO 1751/1-1). E.K. was supported by the Environment Research and Technology Development Fund (ERTDF) (S-10) from the Ministry of the Environment, Japan. E.R. was funded by LUC4C and by the Joint UK DECC/Defra Met Office Hadley Centre Climate Programme (GA01101). S.Z. has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement no. 647204; QUINCY). B.D.S. is supported by the Swiss National Science Foundation and FP7 funding through project EMBRACE (282672). P.C. received support from the ERC SyG project IMBALANCE-P: 'Effects of phosphorus limitations on Life, Earth system and Society' grant agreement no. 610028. This is paper number 24 of the Birmingham Institute of Forest Research.

Author information

Affiliations

Authors

Contributions

A.A., S.S., J.P. and B.D.S. conceived the study. B.P., L.C., L.P.C., A.B., M.F., E.K., J.E.M.S.N., A.D.B., M.L., T.A.M.P., E.R., T.G., N.V., C.Y. and S.Z. made changes to model code and provided simulation results. A.A. and S.S. analysed results. B.D.S., P.C. and W.L. provided Fig. 3. A.A. wrote the first draft, all authors commented on the draft and discussion of results.

Corresponding author

Correspondence to A. Arneth.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary Figures and tables (PDF 337 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Arneth, A., Sitch, S., Pongratz, J. et al. Historical carbon dioxide emissions caused by land-use changes are possibly larger than assumed. Nature Geosci 10, 79–84 (2017). https://doi.org/10.1038/ngeo2882

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing