Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event

Abstract

The Early Jurassic Toarcian oceanic anoxic event (183 Ma) was marked by marine anoxia–euxinia and globally significant organic-matter burial, accompanied by a major global carbon-cycle perturbation probably linked to Karoo–Ferrar volcanism. Although the Toarcian oceanic anoxic event is well studied in the marine realm, accompanying climatic and environmental change on the continents is poorly understood. Here, utilizing radioisotopic, palynological and geochemical data from lacustrine black shales, we demonstrate that a large lake system developed contemporaneously with the Toarcian oceanic anoxic event in the Sichuan Basin, China, probably due to enhanced hydrological cycling under elevated atmospheric pCO 2. We attribute increased lacustrine organic productivity to elevated fluvial nutrient supply, which resulted in the burial of 460 Gt of organic carbon in the Sichuan Basin alone, creating an important negative feedback in the global exogenic carbon cycle. We suggest that enhanced nutrient delivery to marine and large lacustrine systems was a key component in the global carbon cycle recovery during the Toarcian oceanic anoxic event and acted to shorten the duration of the recovery of global δ13C values.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Size and location of the palaeo-Sichuan lake at 179 Ma.
Figure 2: Stratigraphic correlation of Cores A and B and palaeoenvironmental proxies in the Sichuan Basin (China).
Figure 3: Geochemical comparison between the lacustrine Da’anzhai Member (Sichuan Basin, China) and the lower Toarcian marine succession from Yorkshire (UK).
Figure 4: Model for the formation of lacustrine conditions in the Sichuan Basin.

Similar content being viewed by others

References

  1. Jenkyns, H. C. The early Toarcian and Cenomanian-Turonian anoxic events in Europe: comparisons and contrasts. Geol. Rundsch. 74, 505–518 (1985).

    Article  Google Scholar 

  2. Jenkyns, H. C. The early Toarcian (Jurassic) anoxic event: stratigraphic, sedimentary, and geochemical evidence. Am. J. Sci. 288, 101–151 (1988).

    Google Scholar 

  3. Hesselbo, S. P. et al. Massive dissociation of gas hydrate during a Jurassic oceanic anoxic event. Nature 406, 392–395 (2000).

    Article  Google Scholar 

  4. Sælen, G., Tyson, R. V., Telnæs, N. & Talbot, M. R. Constracting watermass conditions during deposition of the Whitby Mudstone (Lower Jurassic) and Kimmeridge Clay (Upper Jurassic) formations, UK. Palaeogeogr. Palaeoclimatol. Palaeoecol. 163, 163–196 (2000).

    Article  Google Scholar 

  5. Jenkyns, H. C., Jones, C. E., Grocke, D. R., Hesselbo, S. P. & Parkinson, D. N. Chemostratigraphy of the Jurassic system: applications, limitations and implications for palaeoceanography. J. Geol. Soc. Lond. 159, 351–378 (2002).

    Article  Google Scholar 

  6. Kemp, D. B., Coe, A. L., Cohen, A. S. & Schwark, L. Astronomical pacing of methane release in the Early Jurassic period. Nature 437, 396–399 (2005).

    Article  Google Scholar 

  7. Hesselbo, S. P., Jenkyns, H. C., Duarte, L. V. & Oliveira, L. C. V. Carbon-isotope record of the early Jurassic (Toarcian) oceanic anoxic event from fossil wood and marine carbonate (Lusitanian Basin, Portugal). Earth Planet. Sci. Lett. 253, 455–470 (2007).

    Article  Google Scholar 

  8. Hermoso, M., Le Callonnec, L., Minoletti, F., Renard, M. & Hesselbo, S. P. Expression of the early Toarcian negative carbon-isotope excursion in separated carbonate microfractions (Jurassic, Paris Basin). Earth Planet. Sci. Lett. 277, 194–203 (2009).

    Article  Google Scholar 

  9. French, K. L., Sepúlveda, J., Trabucho-Alexandre, J., Gröcke, D. R. & Summons, R. E. Organic geochemistry of the early Toarcian oceanic anoxic event in Hawsker Bottoms, Yorkshire, England. Earth Planet. Sci. Lett. 390, 116–127 (2014).

    Article  Google Scholar 

  10. Suan, G., van de Schootbrugge, B., Adatte, T., Fiebig, J. & Oschmann, W. Calibrating the magnitude of the Toarcian carbon cycle perturbation. Paleoceanography 30, 495–509 (2015).

    Article  Google Scholar 

  11. Duncan, R. A., Hooper, P. R., Rehacek, J., Marsh, J. S. & Duncan, A. R. The timing and duration of the Karoo igneous event, southern Gondwana. J. Geophys. Res. 102, 18127–18138 (1997).

    Article  Google Scholar 

  12. McElwain, J. C., Wade-Murphy, J. & Hesselbo, S. P. Changes in carbon dioxide during an oceanic anoxic event linked to intrusion into Gondwana coals. Nature 435, 479–482 (2005).

    Article  Google Scholar 

  13. Svensen, H. et al. Hydrothermal venting of greenhouse gases triggering Early Jurassic global warming. Earth Planet. Sci. Lett. 256, 554–566 (2007).

    Article  Google Scholar 

  14. Dera, G. et al. Climatic ups and downs in a disturbed Jurassic world. Geology 39, 215–218 (2011).

    Article  Google Scholar 

  15. Ullmann, C. V., Thibault, N., Ruhl, M., Hesselbo, S. P. & Korte, C. Effect of a Jurassic oceanic anoxic event on belemnite ecology and evolution. Proc. Natl Acad. Sci. USA 111, 10073–10076 (2014).

    Article  Google Scholar 

  16. Brazier, J. M. et al. Calcium isotope evidence for dramatic increase of continental weathering during the Toarcian oceanic anoxic event (Early Jurassic). Earth Planet. Sci. Lett. 411, 164–176 (2015).

    Article  Google Scholar 

  17. Jenkyns, H. C. Geochemistry of oceanic anoxic events. Geochem. Geophys. Geosys. 11, Q03004 (2010).

    Article  Google Scholar 

  18. Jenkyns, H. C. Evidence for rapid climate change in the Mesozoic-Palaeogene greenhouse world. Phil. Trans. R. Soc. A 361, 1885–1916 (2003).

    Article  Google Scholar 

  19. Huang, K. et al. Sedimentary environments and palaeoclimate of the Triassic and Jurassic in Kuqa River area, Xinjinag [in Chinese with English abstract]. J. Palaeogeogr. 5, 197–208 (2003).

    Google Scholar 

  20. Yang, Y., Li, W. & Ma, L. Tectonic and stratigraphic controls of hydrocarbon systems in the Ordos basin: a multicycle cratonic basin in central China. AAPG Bull. 89, 255–269 (2005).

    Article  Google Scholar 

  21. He, F. & Zhu, T. Favorable targets of breakthrough and built-up of shale gas in continental facies in Lower Jurassic, Sichuan Basin [in Chinese with English abstract]. Pet. Geol. Exp. 34, 246–251 (2012).

    Google Scholar 

  22. Cai, C., Worden, R. H., Bottrell, S. H., Wang, L. & Yang, C. Thermochemical sulphate reduction and the generation of hydrogen sulphide and thiols (mercaptans) in Triassic carbonate reservoirs from the Sichuan Basin, China. Chem. Geol. 202, 39–57 (2003).

    Article  Google Scholar 

  23. Guo, T., Li, Y. & Wei, Z. Reservoir-forming conditions of shale gas in Ziliujing Formation of Yuanba Area in Sichuan Basin [in Chinese with English abstract]. Nat. Gas Geosci. 22, 1–7 (2011).

    Google Scholar 

  24. Wang, Y. et al. The Terrestrial Triassic and Jurassic Systems in the Sichuan Basin, China (University of Science Technology of China Press, 2010).

    Google Scholar 

  25. Wei, M. Continental Mesozoic Stratigraphy and Paleontology in the Sichuan Basin 346–363 (People’s Publishing House of Sichuan, 1982).

    Google Scholar 

  26. Ogg, J. G. & Hinnov, L. A. in The Geologic Time Scale 2012 Vol. 2 (eds Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M.) Ch. 26, 731–791 (Elsevier, 2012).

    Book  Google Scholar 

  27. Hallam, A. A revised sea-level curve for the early Jurassic. J. Geol. Soc. Lond. 138, 735–743 (1981).

    Article  Google Scholar 

  28. Suan, G. et al. Polar record of Early Jurassic massive carbon injection. Earth Planet. Sci. Lett. 312, 102–113 (2011).

    Article  Google Scholar 

  29. Percival, L. M. E. et al. Osmium isotope evidence for two pulses of increased continental weathering linked to Early Jurassic volcanism and climate change. Geology 44, 759–762 (2016).

    Article  Google Scholar 

  30. Moldowan, J. M., Seifert, W. K. & Gallegos, E. J. Relationship between petroleum composition and depositional environment of petroleum source rocks. AAPG Bull. 69, 1255–1268 (1985).

    Google Scholar 

  31. Holba, A. G., Tegelaar, E., Ellis, L., Singletary, M. S. & Albrecht, P. Tetracyclic polyprenoids: indicators of freshwater (lacustrine) algal input. Geology 28, 251–254 (2000).

    Article  Google Scholar 

  32. Vakhrameyev, V. A. Pollen Classopollis: indicator of Jurassic and Cretaceous climate. Paleobotanist 28-29, 301–307 (1981).

    Google Scholar 

  33. Kürschner, W. M., Batenburg, S. J. & Mander, L. Aberrant Classopollis pollen reveals evidence for unreduced (2n) pollen in the conifer family Cheirolepidiaceae during the Triassic–Jurassic transition. Proc. Biol. Sci. 280, 20131708 (2013).

    Article  Google Scholar 

  34. Boos, W. R. & Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218–222 (2010).

    Article  Google Scholar 

  35. Wilkin, R. T. & Barnes, H. L. Pyrite formation by reactions of iron monosulfides with dissolved inorganic and organic sulfur species. Geochim. Cosmochim. Acta 60, 4167–4179 (1996).

    Article  Google Scholar 

  36. Dahl, T. W. et al. Tracing euxinia by molybdenum concentrations in sediments using handheld X-ray fluorescence spectroscopy (HHXRF). Chem. Geol. 360, 241–251 (2013).

    Article  Google Scholar 

  37. Sinninghe Damsté, J. S. et al. Evidence for Gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta 59, 1895–1900 (1995).

    Article  Google Scholar 

  38. Kemp, D. B., Coe, A. L., Cohen, A. S. & Weedon, G. P. Astronomical forcing and chronology of the early Toarcian (Early Jurassic) oceanic anoxic event in Yorkshire, UK. Paleoceanography 26, PA4210 (2011).

    Article  Google Scholar 

  39. Suan, G. et al. Duration of the Early Toarcian carbon isotope excursion deduced from spectral analysis: consequence for its possible causes. Earth Planet. Sci. Lett. 267, 666–679 (2008).

    Article  Google Scholar 

  40. Boulila, S. et al. Astronomical calibration of the Toarcian Stage: implications for sequence stratigraphy and duration of the early Toarcian OAE. Earth Planet. Sci. Lett. 386, 98–111 (2014).

    Article  Google Scholar 

  41. Beerling, D. J. & Brentnall, S. J. Numerical evaluation of mechanisms driving early Jurassic changes in global carbon cycling. Geology 35, 247–250 (2007).

    Article  Google Scholar 

  42. Zou, C. Unconventional Petroleum GeologyCh. 3, 61–109 (Petroleum Industry Press, 2013).

    Book  Google Scholar 

  43. Dean, W. E. & Gorham, E. Magnitude and significance of carbon burial in lakes, reservoirs, and peatlands. Geology 26, 535–538 (1998).

    Article  Google Scholar 

  44. Cohen, A. S., Coe, A. L., Harding, S. M. & Schwark, L. Osmium isotope evidence for the regulation of atmospheric CO2 by continental weathering. Geology 32, 157–160 (2004).

    Article  Google Scholar 

  45. Ryder, R. T. Petroleum Geology of the Sichuan Basin, China: Report on U.S. Geological Survey and Chinese Ministry of Geology and Mineral Resources Field Investigations and Meetings, October 1991 (US Geological Survey, 1994).

    Google Scholar 

  46. Li, Y. & He, D. Evolution of tectonic-depositional environment and prototype basins of the early Jurassic in Sichuan Basin and adjacent areas [in Chinese with English abstract]. Acta Pet. Sin. 35, 219–232 (2014).

    Article  Google Scholar 

  47. Wall, D. Microplankton, pollen, and spores from the lower Jurassic in Britain. Micropaleontology 11, 151–190 (1965).

    Article  Google Scholar 

  48. Dybkjær, K. Palynological zonation and palynofacies investigation of the Fjerritslev Formation (Lower Jurassic-basal Middle Jurassic) in the Danish subbasin. Danmarks Geologiske Undersøgelse Serie A Nr. 30, 4–150 (1991).

    Google Scholar 

  49. Bucefalo Palliani, R., Mattioli, E. & Riding, J. B. The response of marine phytoplankton and sedimentary organic matter to the early Toarcian (Lower Jurassic) oceanic anoxic event in northern England. Mar. Micropaleontol. 46, 223–245 (2002).

    Article  Google Scholar 

  50. Riding, J. B. & Helby, R. Early Jurassic (Toarcian) dinoflagellate cysts from the Timor Sea, Australia. Mem. Assoc. Australas. Palaeontol. 24, 1–32 (2001).

    Google Scholar 

  51. Lichtfouse, E., Derenne, S., Mariotti, A. & Largeau, C. Possible algal origin of long-chain odd n-alkanes in immature sediments as revealed by distributions and carbon-isotope ratios. Org. Geochem. 22, 1023–1027 (1994).

    Article  Google Scholar 

  52. Meyers, P. Preservation of elemental and isotopic source identification of sedimentary organic matter. Chem. Geol. 114, 289–302 (1994).

    Article  Google Scholar 

  53. Meyers, P. & Ishiwatari, R. in Topics in Geobiology Vol. 11 (eds Engel, M. H. & Macko, S. A.) Ch. 8, 185–209 (Springer, 1993).

    Google Scholar 

  54. van Bergen, P. F. & Poole, I. Stable carbon isotopes of wood: a clue to palaeoclimate? Palaeogeogr. Palaeoclimatol. Palaeoecol. 182, 31–45 (2002).

    Article  Google Scholar 

  55. Whelan, J. & Thompson-Rizer, C. Org Geochem. in Topics in Geobiology Vol. 11 (eds Engel, M. H. & Macko, S. A.) Ch. 14, 289–353 (Springer, 1993).

    Google Scholar 

Download references

Acknowledgements

Shell International Exploration & Production B.V. is acknowledged for financial support for this study. D.S. acknowledges the Total endowment fund. R.D.P. and B.D.A.N. acknowledge funding from the advanced ERC grant ‘the greenhouse earth system’ (T-GRES, project reference 340923). All authors thank Shell Global Solutions International B.V., Shell China Exploration & Production Co. Ltd, and PetroChina Southwest Oil and Gasfield Company for approval to publish this study. J.B.R. publishes with the approval of the Executive Director, British Geological Survey (NERC). CGG Robertson and Shell are acknowledged for providing the palaeogeographic reconstruction used in Fig. 1. T.-R. Jiang, M. Dransfield and X.-Y. Li (Shell China Exploration and Production Co. Ltd), O. Podlaha, S. v. d. Boorn (Shell Global Solutions International B.V.), Q. Zeng and Z. Tang (PetroChina Southwest Oil and Gasfield Company) and B. Levell (University of Oxford) are acknowledged for discussions and reviews of earlier versions of the manuscript and for providing sample materials. We also thank reviewers D. Kemp and G. Suan for comments and suggestions that have greatly improved this manuscript. This paper is also a contribution to UNESCO-IUGS IGCP Project 632.

Author information

Authors and Affiliations

Authors

Contributions

W.X., M.R., H.C.J. and S.P.H. designed the project. W.X. and M.R. performed core description and sampling. W.X., M.R., J.B.R., D.S. J.W.H.W. and B.D.A.N. performed geochemical and palynological analyses. All authors contributed to data analysis and interpretation and writing and/or refinement of the manuscript.

Corresponding author

Correspondence to Weimu Xu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 18209 kb)

Supplementary Information

Supplementary Information (XLSX 1089 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, W., Ruhl, M., Jenkyns, H. et al. Carbon sequestration in an expanded lake system during the Toarcian oceanic anoxic event. Nature Geosci 10, 129–134 (2017). https://doi.org/10.1038/ngeo2871

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2871

This article is cited by

Search

Quick links

Nature Briefing Anthropocene

Sign up for the Nature Briefing: Anthropocene newsletter — what matters in anthropocene research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Anthropocene