Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India


The depletion of groundwater resources threatens food and water security in India. However, the relative influence of groundwater pumping and climate variability on groundwater availability and storage remains unclear. Here we show from analyses of satellite and local well data spanning the past decade that long-term changes in monsoon precipitation are driving groundwater storage variability in most parts of India either directly by changing recharge or indirectly by changing abstraction. We find that groundwater storage has declined in northern India at the rate of 2 cm yr−1 and increased by 1 to 2 cm yr−1 in southern India between 2002 and 2013. We find that a large fraction of the total variability in groundwater storage in north-central and southern India can be explained by changes in precipitation. Groundwater storage variability in northwestern India can be explained predominantly by variability in abstraction for irrigation, which is in turn influenced by changes in precipitation. Declining precipitation in northern India is linked to Indian Ocean warming, suggesting a previously unrecognized teleconnection between ocean temperatures and groundwater storage.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Changes in groundwater storage from observation well and GRACE data during 2002–2013.
Figure 2: Changes in groundwater level in observation wells during 1996–2013 and their linkage with precipitation.
Figure 3: Changes in precipitation in irrigated and non-irrigated areas.
Figure 4: Groundwater recharge from water-level observations and the PCR-GLOBWB model for 1996–2010.
Figure 5: Linkage between groundwater storage variability and Indian Ocean SST.


  1. 1

    Tiwari, V. M., Wahr, J. & Swenson, S. Dwindling groundwater resources in northern India, from satellite gravity observations. Geophys. Res. Lett. 36, L18401 (2009).

    Article  Google Scholar 

  2. 2

    Rodell, M., Velicogna, I. & Famiglietti, J. S. Satellite-based estimates of groundwater depletion in India. Nature 460, 999–1002 (2009).

    Article  Google Scholar 

  3. 3

    Wada, Y., van Beek, L. P. H. & Bierkens, M. F. P. Nonsustainable groundwater sustaining irrigation: a global assessment. Wat. Resour. Res. 48, W00L06 (2012).

    Article  Google Scholar 

  4. 4

    Döll, P. & Siebert, S. Global modeling of irrigation water requirements. Wat. Resour. Res. 38, 8–1–8–10 (2002).

    Article  Google Scholar 

  5. 5

    Scanlon, B. R. et al. Groundwater depletion and sustainability of irrigation in the US high plains and central valley. Proc. Natl Acad. Sci. USA 109, 9320–9325 (2012).

    Article  Google Scholar 

  6. 6

    Taylor, R. G. et al. Evidence of the dependence of groundwater resources on extreme rainfall in East Africa. Nat. Clim. Change 3, 374–378 (2013).

    Article  Google Scholar 

  7. 7

    Gandhi, V. P. et al. Groundwater Irrigation in India: Gains, Costs, and Risks (Indian Institute of Management Ahmedabad, 2009).

    Google Scholar 

  8. 8

    Shah, T. Climate change and groundwater: India’s opportunities for mitigation and adaptation. Environ. Res. Lett. 4, 035005 (2009).

    Article  Google Scholar 

  9. 9

    Siebert, S. et al. Groundwater use for irrigation—a global inventory. Hydrol. Earth Syst. Sci. 14, 1863–1880 (2010).

    Article  Google Scholar 

  10. 10

    Mishra, V., Smoliak, B. V., Lettenmaier, D. P. & Wallace, J. M. A prominent pattern of year-to-year variability in Indian summer monsoon rainfall. Proc. Natl Acad. Sci. USA 109, 7213–7217 (2012).

    Article  Google Scholar 

  11. 11

    Bollasina, M. A., Ming, Y. & Ramaswamy, V. Anthropogenic aerosols and the weakening of the South Asian summer monsoon. Science 334, 502–505 (2011).

    Article  Google Scholar 

  12. 12

    Roxy, M. K. et al. Drying of Indian subcontinent by rapid Indian Ocean warming and a weakening land–sea thermal gradient. Nat. Commun. 6, 7423 (2015).

    Article  Google Scholar 

  13. 13

    Mishra, V., Shah, R. & Thrasher, B. Soil moisture droughts under the retrospective and projected climate in India. J. Hydrometeorol. 15, 2267–2292 (2014).

    Article  Google Scholar 

  14. 14

    Wada, Y., Wisser, D. & Bierkens, M. F. P. Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources. Earth Syst. Dyn. 5, 15–40 (2014).

    Article  Google Scholar 

  15. 15

    Whittemore, D. O., Butler, J. J. Jr & Wilson, B. B. Assessing the major drivers of water-level declines: new insights into the future of heavily stressed aquifers. Hydrol. Sci. J. 61, 134–145 (2016).

    Article  Google Scholar 

  16. 16

    Yue, S. & Wang, C. Y. Regional streamflow trend detection with consideration of both temporal and spatial correlation. Int. J. Climatol. 22, 933–946 (2002).

    Article  Google Scholar 

  17. 17

    Report of the Ground Water Estimation Committee: Ground Water Resource Estimation Methodology (Ministry of Water Resources, Government of India, 2009).

  18. 18

    MacDonald, A. M. et al. Groundwater Resources in the Indo-Gangetic Basin: Resilience to Climate Change and Abstraction OR/15/047 (British Geological Survey, 2015).

    Google Scholar 

  19. 19

    Basharat, M., Hassan, D., Bajkani, A. A. & Sultan, S. J. Surface Water and Groundwater Nexus: Groundwater Management Options for Indus Basin Irrigation System (International Waterlogging and Salinity Research Institute (IWASRI), Water and Power Development Authority, Publication 299, 2014).

    Google Scholar 

  20. 20

    MacDonald, A. M. et al. Groundwater quality and depletion in the Indo-Gangetic Basin mapped from in situ observations. Nat. Geosci. 9, 762–766 (2016).

    Article  Google Scholar 

  21. 21

    Schaner, N., Voisin, N., Nijssen, B. & Lettenmaier, D. P. The contribution of glacier melt to streamflow. Environ. Res. Lett. 7, 034029 (2012).

    Article  Google Scholar 

  22. 22

    Immerzeel, W. W., Van Beek, L. P. & Bierkens, M. F. Climate change will affect the Asian water towers. Science 328, 1382–1385 (2010).

    Article  Google Scholar 

  23. 23

    Harvey, F. E. & Sibray, S. S. Delineating ground water recharge from leaking irrigation canals using water chemistry and isotopes. Ground Water 39, 408–421 (2001).

    Article  Google Scholar 

  24. 24

    Azen, R. & Budescu, D. V. The dominance analysis approach for comparing predictors in multiple regression. Psychol. Methods 8, 129–148 (2003).

    Article  Google Scholar 

  25. 25

    Roxy, M. K., Ritika, K., Terray, P. & Masson, S. The curious case of Indian Ocean warming. J. Clim. 27, 8501–8509 (2014).

    Article  Google Scholar 

  26. 26

    Kumar, K. K., Rajagopalan, B., Hoerling, M., Bates, G. & Cane, M. Unraveling the mystery of Indian monsoon failure during El Niño. Science 314, 115–119 (2006).

    Article  Google Scholar 

  27. 27

    Shah, H. L. & Mishra, V. Hydrologic changes in Indian sub-continental river basins (1901–2012). J. Hydrometeorol. 17, 2667–2687 (2016).

    Article  Google Scholar 

  28. 28

    Ashok, K., Guan, Z., Saji, N. H. & Yamagata, T. Individual and combined influences of ENSO and the Indian Ocean dipole on the Indian summer monsoon. J. Clim. 17, 3141–3155 (2004).

    Article  Google Scholar 

  29. 29

    Compo, G. P. & Sardeshmukh, P. D. Removing ENSO-related variations from the climate record. J. Clim. 23, 1957–1978 (2010).

    Article  Google Scholar 

  30. 30

    Taylor, R. G. et al. Ground water and climate change. Nat. Clim. Change 3, 322–329 (2013).

    Article  Google Scholar 

  31. 31

    Fishman, R. M., Siegfried, T., Raj, P., Modi, V. & Lall, U. Over-extraction from shallow bedrock versus deep alluvial aquifers: reliability versus sustainability considerations for India’s groundwater irrigation. Wat. Resour. Res. 47, W00L05 (2011).

    Article  Google Scholar 

  32. 32

    Döll, P. Vulnerability to the impact of climate change on renewable groundwater resources: a global-scale assessment. Environ. Res. Lett. 4, 035006 (2009).

    Article  Google Scholar 

  33. 33

    Raza, A., Latif, M. & Shakir, A. S. Long-term effectiveness of lining tertiary canals in the Indus basin of Pakistan. Irrig. Drain. 62, 16–24 (2013).

    Article  Google Scholar 

  34. 34

    Shamsudduha, M., Taylor, R. G., Ahmed, K. M. & Zahid, A. The impact of intensive groundwater abstraction on recharge to a shallow regional aquifer system: evidence from Bangladesh. Hydrogeol. J. 19, 901–916 (2011).

    Article  Google Scholar 

  35. 35

    Wada, Y. et al. Global depletion of groundwater resources. Geophys. Res. Lett. 37, L20402 (2010).

    Article  Google Scholar 

  36. 36

    Pai, D. S. et al. Development of a new high spatial resolution (0.25° × 0.25°) long period (1901–2010) daily gridded rainfall data set over India and its comparison with existing data sets over the region. MAUSAM 65, 1–18 (2014).

    Google Scholar 

  37. 37

    Landerer, F. W. & Swenson, S. C. Accuracy of scaled GRACE terrestrial water storage estimates. Wat. Resour. Res. 48, W04531 (2012).

    Article  Google Scholar 

  38. 38

    Swenson, S. & Wahr, J. Post-processing removal of correlated errors in GRACE data. Geophys. Res. Lett. 33, L08402 (2006).

    Google Scholar 

  39. 39

    Rodell, M. et al. The global land data assimilation system. Bull. Am. Meteorol. Soc. 85, 381–394 (2004).

    Article  Google Scholar 

  40. 40

    Huffman, G. J. et al. The TRMM multisatellite precipitation analysis (TMPA): quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 8, 38–55 (2007).

    Article  Google Scholar 

  41. 41

    Siebert, S., Döll, P., Feick, S., Hoogeveen, J. & Frenken, K. Global Map of Irrigation Areas (Version, 2007).

    Google Scholar 

  42. 42

    Aquifer Systems of India (Central Ground Water Board, Ministry of Water Resources, Government of India, 2012).

  43. 43

    Dorigo, W. et al. Evaluating global trends (1988–2010) in harmonized multi-satellite surface soil moisture. Geophys. Res. Lett. 39, L18405 (2012).

    Article  Google Scholar 

  44. 44

    Mu, Q., Heinsch, F. A., Zhao, M. & Running, S. W. Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens. Environ. 111, 519–536 (2007).

    Article  Google Scholar 

  45. 45

    Mann, H. B. Nonparametric tests against trend. Econ. J. Econ. Soc. 13, 245–259 (1945).

    Google Scholar 

  46. 46

    Sen, P. K. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc. 63, 1379–1389 (1968).

    Article  Google Scholar 

  47. 47

    McKee, T. B., Doesken, N. J. & Kleist, J. The relationship of drought frequency and duration to time scales. Proc. 8th Conf. Appl. Clim. Vol. 17, 179–183 (American Meteorological Society, 1993).

    Google Scholar 

  48. 48

    Budescu, D. V. Dominance analysis: a new approach to the problem of relative importance of predictors in multiple regression. Psychol. Bull. 114, 542–551 (1993).

    Article  Google Scholar 

  49. 49

    Nimon, K. F. & Oswald, F. L. Understanding the results of multiple linear regression beyond standardized regression coefficients. Organ. Res. Methods 16, 650–674 (2013).

    Article  Google Scholar 

  50. 50

    Smith, T. M., Reynolds, R. W., Peterson, T. C. & Lawrimore, J. Improvements to NOAA’s historical merged land-ocean surface temperature analysis (1880–2006). J. Clim. 21, 2283–2296 (2008).

    Article  Google Scholar 

Download references


The authors acknowledge funding from the ITRA-Water project. Data availability from the Central Ground Water Board (CGWB), Gravity Recovery and Climate Experiment (GRACE), and India Meteorological Department (IMD) is greatly appreciated.

Author information




V.M. conceived the idea. A.A. collected, analysed the data and developed the methodology. T.G. and Y.W. contributed to discussions of the findings. Y.W. provided groundwater recharge and abstraction data from the PCR-GLOBWB model. V.M. and A.A. wrote the manuscript with contributions from T.G. and Y.W.

Corresponding author

Correspondence to Vimal Mishra.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3823 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Asoka, A., Gleeson, T., Wada, Y. et al. Relative contribution of monsoon precipitation and pumping to changes in groundwater storage in India. Nature Geosci 10, 109–117 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing