A multiple-impact origin for the Moon


The hypothesis of lunar origin by a single giant impact can explain some aspects of the Earth–Moon system. However, it is difficult to reconcile giant-impact models with the compositional similarity of the Earth and Moon without violating angular momentum constraints. Furthermore, successful giant-impact scenarios require very specific conditions such that they have a low probability of occurring. Here we present numerical simulations suggesting that the Moon could instead be the product of a succession of a variety of smaller collisions. In this scenario, each collision forms a debris disk around the proto-Earth that then accretes to form a moonlet. The moonlets tidally advance outward, and may coalesce to form the Moon. We find that sub-lunar moonlets are a common result of impacts expected onto the proto-Earth in the early Solar System and find that the planetary rotation is limited by impact angular momentum drain. We conclude that, assuming efficient merger of moonlets, a multiple-impact scenario can account for the formation of the Earth–Moon system with its present properties.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Lunar formation in the multiple-impact scenario.
Figure 2: Impact simulation.
Figure 3: Disk properties in the angle–velocity phase space.
Figure 4: Final satellite mass and system angular momentum.
Figure 5: Planetary rotation.
Figure 6: Disk structure post impact.


  1. 1

    Canup, R. M. Simulations of a late lunar-forming impact. Icarus 168, 433–456 (2004).

    Article  Google Scholar 

  2. 2

    Herwartz, D., Pack, A., Friedrichs, B. & Bischoff, A. Identification of the giant impactor Theia in lunar rocks. Science 344, 1146–1150 (2014).

    Article  Google Scholar 

  3. 3

    Zhang, J., Dauphas, N., Davis, A. M., Leya, I. & Fedkin, A. The proto-Earth as a significant source of lunar material. Nat. Geosci. 5, 251–255 (2012).

    Article  Google Scholar 

  4. 4

    Kruijer, T. S., Kleine, T., Fischer-Godde, M. & Sprung, P. Lunar tungsten isotopic evidence for the late veneer. Nature 520, 534–537 (2015).

    Article  Google Scholar 

  5. 5

    Pahlevan, K. & Stevenson, D. J. Equilibration in the aftermath of the lunar-forming giant impact. Earth Planet. Sci. Lett. 262, 438–449 (2007).

    Article  Google Scholar 

  6. 6

    Canup, R. M. Forming a moon with an Earth-like composition via a giant impact. Science 338, 1052–1055 (2012).

    Article  Google Scholar 

  7. 7

    Ćuk, M. & Stewart, S. T. Making the Moon from a fast-spinning Earth: a giant impact followed by resonant despinning. Science 338, 1047–1052 (2012).

    Article  Google Scholar 

  8. 8

    Wisdom, J. & Tian, Z. Early evolution of the Earth–Moon system with a fast-spinning Earth. Icarus 256, 138–146 (2015).

    Article  Google Scholar 

  9. 9

    Jacobson, S. A. & Morbidelli, A. Lunar and terrestrial planet formation in the grand tack scenario. Phil. Trans. R. Soc. A 372, 20130174 (2014).

    Article  Google Scholar 

  10. 10

    Kaib, N. A. & Cowan, N. B. The feeding zones of terrestrial planets and insights into moon formation. Icarus 252, 161–174 (2015).

    Article  Google Scholar 

  11. 11

    Jacobson, S. A. et al. Highly siderophile elements in Earth’s mantle as a clock for the Moon-forming impact. Nature 508, 84–87 (2014).

    Article  Google Scholar 

  12. 12

    Mastrobuono-Battisti, A., Perets, H. B. & Raymond, S. N. A primordial origin for the compositional similarity between the Earth and the Moon. Nature 520, 212–215 (2015).

    Article  Google Scholar 

  13. 13

    Citron, R. I., Aharonson, O., Perets, H. & Genda, H. in 45th Lunar Planet. Sci. Conf. 2085 (Lunar and Planetary Institute, 2014); http://go.nature.com/2hlIBiP

    Google Scholar 

  14. 14

    Ringwood, A. Flaws in the giant impact hypothesis of lunar origin. Earth Planet. Sci. Lett. 95, 208–214 (1989).

    Article  Google Scholar 

  15. 15

    Jutzi, M. & Asphaug, E. Forming the lunar farside highlands by accretion of a companion moon. Nature 476, 69–72 (2011).

    Article  Google Scholar 

  16. 16

    Agnor, C. B., Canup, R. M. & Levison, H. F. On the character and consequences of large impacts in the late stage of terrestrial planet formation. Icarus 142, 219–237 (1999).

    Article  Google Scholar 

  17. 17

    Stewart, S. T. & Leinhardt, Z. M. Collisions between gravity-dominated bodies. ii. The diversity of impact outcomes during the end stage of planet formation. Astrophys. J. 751, 32 (2012).

    Article  Google Scholar 

  18. 18

    Lock, S. J. & Stewart, S. T. in 47th Lunar Planet. Sci. Conf. 2856 (Lunar and Planetary Institute, 2014); http://go.nature.com/2h6KxQ1

    Google Scholar 

  19. 19

    Wang, K. & Jacobsen, S. B. Potassium isotopic evidence for a high-energy giant impact origin of the Moon. Nature 538, 487–490 (2016).

    Article  Google Scholar 

  20. 20

    Salmon, J. & Canup, R. M. Accretion of the moon from non-canonical discs. Phil. Trans. R. Soc. A 372, 20130256 (2014).

    Article  Google Scholar 

  21. 21

    Nakajima, M. & Stevenson, D. J. Investigation of the initial state of the moon-forming disk: bridging SPH simulations and hydrostatic models. Icarus 233, 259–267 (2014).

    Article  Google Scholar 

  22. 22

    Reufer, A., Meier, M. M., Benz, W. & Wieler, R. A hit-and-run giant impact scenario. Icarus 221, 296–299 (2012).

    Article  Google Scholar 

  23. 23

    Touboul, M., Puchtel, I. S. & Walker, R. J. 182W evidence for long-term preservation of early mantle differentiation products. Science 335, 1065–1069 (2012).

    Article  Google Scholar 

  24. 24

    Mukhopadhyay, S. Early differentiation and volatile accretion recorded in deep-mantle neon and xenon. Nature 486, 101–104 (2012).

    Article  Google Scholar 

  25. 25

    Nakajima, M. & Stevenson, D. J. Melting and mixing states of the Earth’s mantle after the Moon-forming impact. Earth Planet. Sci. Lett. 427, 286–295 (2015).

    Article  Google Scholar 

  26. 26

    Robinson, K. L. et al. Water in evolved lunar rocks: evidence for multiple reservoirs. Geochim. Cosmochim. Acta 188, 244–260 (2016).

    Article  Google Scholar 

  27. 27

    Raymond, S. N., O’Brien, D. P., Morbidelli, A. & Kaib, N. A. Building the terrestrial planets: constrained accretion in the inner solar system. Icarus 203, 644–662 (2009).

    Article  Google Scholar 

  28. 28

    Canup, R. M. Lunar-forming collisions with pre-impact rotation. Icarus 196, 518–538 (2008).

    Article  Google Scholar 

  29. 29

    Canup, R. M. Dynamics of lunar formation. Annu. Rev. Astron. Astrophys. 42, 441–475 (2004).

    Article  Google Scholar 

  30. 30

    Canup, R. M., Levison, H. F. & Stewart, G. R. Evolution of a terrestrial multiple-moon system. Astron. J. 117, 603 (1999).

    Article  Google Scholar 

  31. 31

    Pahlevan, K. & Morbidelli, A. Collisionless encounters and the origin of the lunar inclination. Nature 527, 492–494 (2015).

    Article  Google Scholar 

  32. 32

    Ida, S., Canup, R. M. & Stewart, G. R. Lunar accretion from an impact-generated disk. Nature 389, 353–357 (1997).

    Article  Google Scholar 

  33. 33

    Springel, V. The cosmological simulation code gadget-2. Mon. Not. R. Astron. Soc. 364, 1105–1134 (2005).

    Article  Google Scholar 

  34. 34

    Melosh, H. A hydrocode equation of state for SiO2 . Meteorit. Planet. Sci. 42, 2079–2098 (2007).

    Article  Google Scholar 

  35. 35

    Charnoz, S., Salmon, J. & Crida, A. The recent formation of Saturn’s moonlets from viscous spreading of the main rings. Nature 465, 752–754 (2010).

    Article  Google Scholar 

  36. 36

    Canup, R. M., Ward, W. R. & Cameron, A. A scaling relationship for satellite-forming impacts. Icarus 150, 288–296 (2001).

    Article  Google Scholar 

  37. 37

    Kokubo, E., Kominami, J. & Ida, S. Formation of terrestrial planets from protoplanets. i. Statistics of basic dynamical properties. Astrophys. J. 642, 1131 (2006).

    Article  Google Scholar 

Download references


We thank S. Stewart and R. Citron for providing guidance on the computational code, as well as A. Mastrobuono-Battisti for providing the data used for the Monte Carlo simulations. This project was supported by the Minerva Center for Life Under Extreme Planetary Conditions as well as by the I-CORE Program of the PBC and ISF (Center No. 1829/12). R.R. is grateful to the Israel Ministry of Science, Technology and Space for their Shulamit Aloni fellowship. H.B.P. also acknowledges support from the Israel-US bi-national science foundation, BSF grant number 2012384, and the European union career integration grant ‘GRAND’.

Author information




R.R. performed the SPH simulations and their analysis with guidance by O.A. H.B.P. suggested the multiple-impact idea. All authors contributed to discussions, interpretations and writing.

Corresponding author

Correspondence to Raluca Rufu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 408 kb)

Supplementary Information

Supplementary Information (MP4 6789 kb)

Supplementary Information

Supplementary Information (TXT 76 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rufu, R., Aharonson, O. & Perets, H. A multiple-impact origin for the Moon. Nature Geosci 10, 89–94 (2017). https://doi.org/10.1038/ngeo2866

Download citation

Further reading


Nature Briefing

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing