Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Centennial glacier retreat as categorical evidence of regional climate change

Abstract

The near-global retreat of glaciers over the last century provides some of the most iconic imagery for communicating the reality of anthropogenic climate change to the public. Surprisingly, however, there has not been a quantitative foundation for attributing the retreats to climate change, except in the global aggregate. This gap, between public perception and scientific basis, is due to uncertainties in numerical modelling and the short length of glacier mass-balance records. Here we present a method for assessing individual glacier change based on the signal-to-noise ratio, a robust metric that is insensitive to uncertainties in glacier dynamics. Using only meteorological and glacier observations, and the characteristic decadal response time of glaciers, we demonstrate that observed retreats of individual glaciers represent some of the highest signal-to-noise ratios of climate change yet documented. Therefore, in many places, the centennial-scale retreat of the local glaciers does indeed constitute categorical evidence of climate change.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The global record of glacier lengths5, for 158 glaciers with 20 or more individual observations (shown as dots).
Figure 2: The response of idealized glaciers to climate.
Figure 3: Analysis for Hintereisferner (Austrian Alps, 46.8° N, 10.8° E).
Figure 4: Analysis of glacier retreat from around the world (see Fig. 1).

References

  1. 1

    Nussbaumer, S. U. & Zumbühl, H. J. The little ice age history of the glacier des Bosons (Mont Blonc massif, France): a new high-resolution glacier length curve based on historical documents. Climatic Change 111, 301–334 (2012).

    Article  Google Scholar 

  2. 2

    Forbes, J. D. Occasional Papers on the Theory of Glaciers (A & C Black, 1859).

    Google Scholar 

  3. 3

    Tyndall, J. & Huxley, T. H. Observations on Glaciers. Proc. R. Soc. Lond. 8, 331–338 (1857).

    Article  Google Scholar 

  4. 4

    Solomina, O. N. et al. Holocene glacier fluctuations. Quat. Sci. Rev. 111, 9–34 (2015).

    Article  Google Scholar 

  5. 5

    Leclercq, P. W. et al. A data set of world-wide glacier length fluctuations. Cryosphere 8, 659–672 (2014).

    Article  Google Scholar 

  6. 6

    Braithwaite, R. J. & Zhang, Y. Relationships between interannual variability of glacier mass balance and climate. J. Glaciol. 45, 456–462 (1999).

    Article  Google Scholar 

  7. 7

    Medwedeff, W. G. & Roe, G. H. Trends and variability in the global dataset of glacier mass balance. Clim. Dynam. http://dx.doi.org/10.1007/s00382-016-3253-x (2016).

  8. 8

    Oerlemans, J. Holocene glacier fluctuations: is the current rate of retreat exceptional? Ann. Glaciol. 31, 39–44 (2000).

    Article  Google Scholar 

  9. 9

    Marzeion, B., Cogley, J. G., Richter, K. & Parkes, D. Attribution of global glacier mass loss to anthropogenic and natural causes. Science 345, 919–921 (2014).

    Article  Google Scholar 

  10. 10

    Leclercq, P. W. & Oerlemans, J. Global and hemispheric temperature reconstruction from glacier length fluctuations. Clim. Dynam. 38, 1065–1079 (2012).

    Article  Google Scholar 

  11. 11

    Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 10 (IPCC, Cambridge Univ. Press, 2013).

    Google Scholar 

  12. 12

    Jóhannesson, T., Raymond, C. F. & Waddington, E. D. Timescale for adjustments of glaciers to changes in mass balance. J. Glaciol. 35, 355–369 (1989).

    Article  Google Scholar 

  13. 13

    Oerlemans, J. Glaciers and Climate Change (A. A. Balkema, 2000).

    Google Scholar 

  14. 14

    Roe, G. H. & Baker, M. B. Glacier response to climate perturbations: an accurate linear geometric model. J. Glaciol. 60, 670–684 (2014).

    Article  Google Scholar 

  15. 15

    Anderson, L. S., Roe, G. H. & Anderson, R. S. The effects of interannual climate variability on paleoclimate estimates derived from glacial moraines. Geology 42, 55–58 (2014).

    Article  Google Scholar 

  16. 16

    Rohde, R. et al. A new estimate of the average earth surface land temperature spanning 1753 to 2011. Geoinfor. Geostat. http://dx.doi.org/10.4172/gigs.1000101 (2013).

  17. 17

    Legates, D. R. & Willmott, C. J. Mean seasonal and spatial variability in gauge corrected global precipitation. Int. J. Climatol. 10, 111–127 (1990).

    Article  Google Scholar 

  18. 18

    Fluctuations of Glaciers Database (World Glacier Monitoring Service (2014); http://dx.doi.org/10.5904/wgms-fog-2014-09

  19. 19

    Greuell, W. Hintereisferner, Austria: mass-balance reconstruction and numerical modelling of the historical length variations. J. Glaciol. 38, 233–244 (1992).

    Article  Google Scholar 

  20. 20

    Annan, J. D. & Hargreaves, J. C. Using multiple observationally-based constraints to estimate climate sensitivity. Geophys. Res. Lett. 33, L06704 (2006).

    Article  Google Scholar 

  21. 21

    Matthews, J. A. & Briffa, K. R. The little ice age: re-evaluation of an evolving concept. Geogr. Ann. 87 A, 17–36 (2005).

    Article  Google Scholar 

  22. 22

    Nadarajah, S. & Kotz, S. Computation of signal-to-noise ratios. Commun. Math. Comput. Chem. 57, 105–110 (2007).

    Google Scholar 

  23. 23

    von Storch, H. & Zwiers, F. W. Statistical Analysis in Climate Research (Cambridge Univ. Press, 1999).

    Book  Google Scholar 

  24. 24

    Roe, G. H. What do glaciers tell us about climate variability and climate change? J. Glaciol. 57, 567–578 (2011).

    Article  Google Scholar 

  25. 25

    Schneider, T. & Neumaier, A. Algorithm 808: ARFIT—a Matlab package for the estimation of parameters and eigenmodes of multivariate autoregressive models. ACM Trans. Math. Softw. 27, 58–65 (2001).

    Article  Google Scholar 

  26. 26

    Burke, E. E. & Roe, G. H. The persistence of memory in the climatic forcing of glaciers. Clim. Dynam. 42, 1335–1346 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to P. Green, K. Armour, D. Battisti and E. Steig for valuable comments and conversations. F.H. thanks the Institute of Atmospheric and Cryospheric Sciences, University of Innsbruck for financial support.

Author information

Affiliations

Authors

Contributions

G.H.R., M.B.B. and F.H. planned the analyses, which G.H.R. performed. All authors contributed to the interpretation of the results and to writing the manuscript.

Corresponding author

Correspondence to Gerard H. Roe.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 3332 kb)

Supplementary Information

Supplementary Information (XLSX 64 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Roe, G., Baker, M. & Herla, F. Centennial glacier retreat as categorical evidence of regional climate change. Nature Geosci 10, 95–99 (2017). https://doi.org/10.1038/ngeo2863

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing