Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification

Abstract

Coccolithophores—single-celled calcifying phytoplankton—are an important group of marine primary producers and the dominant builders of calcium carbonate globally. Coccolithophores form extensive blooms and increase the density and sinking speed of organic matter via calcium carbonate ballasting. Thereby, they play a key role in the marine carbon cycle. Coccolithophore physiological responses to experimental ocean acidification have ranged from moderate stimulation to substantial decline in growth and calcification rates, combined with enhanced malformation of their calcite platelets. Here we report on a mesocosm experiment conducted in a Norwegian fjord in which we exposed a natural plankton community to a wide range of CO2-induced ocean acidification, to test whether these physiological responses affect the ecological success of coccolithophore populations. Under high-CO2 treatments, Emiliania huxleyi, the most abundant and productive coccolithophore species, declined in population size during the pre-bloom period and lost the ability to form blooms. As a result, particle sinking velocities declined by up to 30% and sedimented organic matter was reduced by up to 25% relative to controls. There were also strong reductions in seawater concentrations of the climate-active compound dimethylsulfide in CO2-enriched mesocosms. We conclude that ocean acidification can lower calcifying phytoplankton productivity, potentially creating a positive feedback to the climate system.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Time course of key parameters in the mesocosms.
Figure 2: Responses of E. huxleyi to ocean acidification.
Figure 3: Effects on sinking particles.
Figure 4: Implications for vertical fluxes.

Similar content being viewed by others

References

  1. Brown, C. W. & Yoder, J. A. Coccolithophorid blooms in the global ocean. J. Geophys. Res. 99, 7467–7482 (1994).

    Article  Google Scholar 

  2. Young, J. R. in Coccolithophores (eds Winter, A. & Siesser, W. G.) 63–82 (Cambridge Univ. Press, 1994).

    Google Scholar 

  3. Raven, J. A. & Crawfurd, K. Environmental controls on coccolithophore calcification. Mar. Ecol. Prog. Ser. 470, 137–166 (2012).

    Article  Google Scholar 

  4. Broecker, W. & Clark, E. Ratio of coccolith CaCO3 to foraminifera CaCO3 in late Holocene deep sea sediments. Paleoceanography 24, PA3205 (2009).

    Article  Google Scholar 

  5. Tyrrell, T., Holligan, P. M. & Mobley, C. D. Optical impacts of oceanic coccolithophore blooms. J. Geophys. Res. 104, 3223–3241 (1999).

    Article  Google Scholar 

  6. Frankignoulle, M., Canon, C. & Gattuso, J.-P. Marine calcification as a source of carbon dioxide: positive feedback of increasing atmospheric CO2 . Limnol. Oceanogr. 39, 458–462 (1994).

    Article  Google Scholar 

  7. Armstrong, R. A., Lee, C., Hedges, J. I., Honjo, S. & Wakeham, S. G. A new, mechanistic model for organic carbon fluxes in the ocean based on the quantitative association of POC with ballast minerals. Deep-Sea Res. II 49, 219–236 (2002).

    Article  Google Scholar 

  8. Klaas, C. & Archer, D. A. Association of sinking organic matter with various types of mineral ballast in the deep sea: implications for the rain ratio. Glob. Biogeochem. Cycles 16, 1116 (2002).

    Article  Google Scholar 

  9. Bach, L. T., Riebesell, U., Gutowska, M. A., Federwisch, L. & Schulz, K. G. A unifying concept of coccolithophore sensitivity to changing carbonate chemistry embedded in an ecological framework. Prog. Oceanogr. 135, 125–138 (2015).

    Article  Google Scholar 

  10. Langer, G. et al. Species-specific responses of calcifying algae to changing seawater carbonate chemistry. Geochem. Geophys. Geosyst. 7, Q09006 (2006).

    Article  Google Scholar 

  11. Langer, G., Nehrke, G., Probert, I., Ly, J. & Ziveri, P. Strain specific responses of Emiliania huxleyi to changing seawater carbonate chemistry. Biogeosciences 6, 2637–2646 (2009).

    Article  Google Scholar 

  12. Meyer, J. & Riebesell, U. Responses of coccolithophores to ocean acidification: a meta-analysis. Biogeosciences 12, 1671–1682 (2015).

    Article  Google Scholar 

  13. IPCC Climate Change 2014: Synthesis Report (eds Pachauri, R. K. & Meyer, L. A.) (2014).

  14. Tyrrell, T. & Merico, A. in Coccolithophores: From Molecular Processes to Global Impact (eds Thierstein, H. R. & Young, J. R.) 75–97 (Springer, 2004).

    Book  Google Scholar 

  15. Delille, B. et al. Response of primary production and calcification to changes of pCO2 during experimental blooms of the coccolithophorid Emiliania huxleyi. Glob. Biogeochem. Cycles 19, GB2023 (2005).

    Article  Google Scholar 

  16. Engel, A. et al. Testing the direct effect of CO2 concentration on a bloom of the coccolithophorid Emiliania huxleyi in mesocosm experiments. Limnol. Oceanogr. 50, 493–504 (2005).

    Article  Google Scholar 

  17. Paulino, A. I., Egge, J. K. & Larsen, A. Effects of increased atmospheric CO2 on small and intermediate sized osmotrophs during a nutrient induced phytoplankton bloom. Biogeosciences 5, 739–748 (2008).

    Article  Google Scholar 

  18. Schulz, K. G. et al. Build-up and decline of organic matter during PeECE III. Biogeosciences 5, 707–718 (2008).

    Article  Google Scholar 

  19. Hopkins, F. E. et al. Ocean acidification and marine trace gas emissions. Proc. Natl Acad. Sci. USA 107, 760–765 (2010).

    Article  Google Scholar 

  20. Feng, Y. et al. Interactive effects of increased pCO2, temperature and irradiance on the marine coccolithophore Emiliania huxleyi (Prymnesiophyceae). Eur. J. Phycol. 43, 87–98 (2008).

    Article  Google Scholar 

  21. Rokitta, S. D. & Rost, B. Effects of CO2 and their modulation by light in the lifecycle stages of the coccolithophore Emiliania huxleyi. Limnol. Oceanogr. 57, 607–618 (2012).

    Article  Google Scholar 

  22. Zhang, Y., Bach, L. T., Schulz, K. G. & Riebesell, U. The modulating effect of light intensity on the response of the coccolithophore Gephyrocapsa oceanica to ocean acidification. Limnol. Oceanogr. 60, 2145–2157 (2015).

    Article  Google Scholar 

  23. Bach, L. T. et al. Influence of plankton community structure on the sinking velocity of marine aggregates. Glob. Biogeochem. Cycles 30, 1145–1165 (2016).

    Article  Google Scholar 

  24. Kwon, E. Y., Primeau, F. & Sarmiento, J. L. The impact of remineralisation depth on the air-sea carbon balance. Nat. Geosci. 2, 630–635 (2009).

    Article  Google Scholar 

  25. Riebesell, U., Körtzinger, A. & Oschlies, A. Sensitivities of marine carbon fluxes to ocean change. Proc. Natl Acad. Sci. USA 106, 20602–20609 (2009).

    Article  Google Scholar 

  26. Keller, M. D., Bellows, W. K. & Guillard, R. R. L. in Biogenic Sulfur in the Environment (eds Saltzman, E. S. & Cooper, W. J.) 167–183 (American Chemical Society, 1989).

    Book  Google Scholar 

  27. Avgoustidi, V. et al. Decreased marine dimethyl sulfide production under elevated CO2 levels in mesocosm and in vitro studies. Environ. Chem. 9, 399–404 (2012).

    Article  Google Scholar 

  28. Archer, S. D. et al. Contrasting responses of DMS and DMSP to ocean acidification in Arctic waters. Biogeosciences 10, 1893–1908 (2013).

    Article  Google Scholar 

  29. Webb, A. L. et al. The effect of ocean acidification on DMS and DMSP production from Emiliania huxleyi in laboratory and mesocosm studies. Environm. Chem. 13, 314–329 (2015).

    Article  Google Scholar 

  30. Levasseur, M. If Gaia could talk. Nat. Geosci. 4, 351–352 (2011).

    Article  Google Scholar 

  31. Six, K. D. et al. Global warming amplified by reduced sulphur fluxes as a result of ocean acidification. Nat. Clim. Change 3, 975–978 (2013).

    Article  Google Scholar 

  32. Riebesell, U. & Tortell, P. D. in Ocean Acidification (eds Gattuso, J.-P. & Hansson, L.) 99–121 (Oxford Univ. Press, 2011).

    Google Scholar 

  33. Zondervan, I. The effect of light, macronutrients, trace metals and CO2 on the production of calcium carbonate and organic carbon in coccolithophores—a review. Deep-Sea Res. II 41, 521–537 (2007).

    Article  Google Scholar 

  34. Stewart, R. I. A. et al. Mesocosm experiments as tool for ecological climate-change research. Adv. Ecol. Res. 48, 71–181 (2013).

    Article  Google Scholar 

  35. Lohbeck, K. T., Riebesell, U., Collins, S. & Reusch, T. B. H. Adaptive evolution of a key phytoplankton species to ocean acidification. Nat. Geosci. 5, 346–352 (2012).

    Article  Google Scholar 

  36. Lohbeck, K. T., Riebesell, U., Collins, S. & Reusch, T. B. H. Functional genetic divergence in high CO2 adapted Emiliania huxleyi populations. Evolution 67, 1892–1900 (2012).

    Article  Google Scholar 

  37. Wessa, P. Pearson Correlation in Free Statistics Software (Office for Research Development and Education, 2015); http://www.wessa.net/rwasp_correlation.wasp

  38. Riebesell, U. et al. Technical Note: A mobile sea-going mesocosm system—new opportunities for ocean change research. Biogeosciences 10, 1835–1847 (2013).

    Article  Google Scholar 

  39. Schulz, K. G. et al. Temporal biomass dynamics of an Arctic plankton bloom in response to increasing levels of atmospheric carbon dioxide. Biogeosciences 10, 161–180 (2013).

    Article  Google Scholar 

  40. Dickson, A. G. in Guide to Best Practise in Ocean Acidification Research and Data Reporting (eds Riebesell, U., Fabry, V. J., Hansson, L. & Gattuso, J.-P.) 17–40 (Luxembourg, 2010).

    Google Scholar 

  41. Mintrop, L., Fernández-Pérez, F., González Dávila, M., Körtzinger, A. & Santana Casiano, J. M. Alkalinity determination by potentiometry—intercalibration using three different methods. Cienc. Mar. 26, 23–37 (2000).

    Article  Google Scholar 

  42. Johnson, K. M., Sieburth, J. M., Williams, P. J. & Brandström, L. Coulometric total carbon analysis for marine studies: automation and calibration. Mar. Chem. 21, 117–133 (1987).

    Article  Google Scholar 

  43. Dickson, A. G. Standards for ocean measurements. Oceanography 23, 34–47 (2010).

    Article  Google Scholar 

  44. Mehrbach, C., Culberson, C. H., Hawley, J. E. & Pytkowicz, R. M. Measurements of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol. Oceanogr. 18, 897–907 (1973).

    Article  Google Scholar 

  45. Lueker, T. J., Dickson, A. G. & Keeling, C. D. Ocean pCO2 calculated from dissolved inorganic carbon, alkalinity, and equations for K1 and K2: validation based on laboratory measurements of CO2 in gas and seawater at equilibrium. Mar. Chem. 70, 105–119 (2000).

    Article  Google Scholar 

  46. Barlow, R. G., Cummings, D. G. & Gibb, S. W. Improved resolution of mono- and divinyl chlorophylls a and b and zeaxanthin and lutein in phytoplankton extracts using reverse phase C-8 HPLC. Mar. Ecol. Prog. Ser. 161, 303–307 (1997).

    Article  Google Scholar 

  47. Larsen, A. et al. Population dynamics and diversity of phytoplankton, bacteria and viruses in a seawater enclosure. Mar. Ecol. Prog. Ser. 221, 47–57 (2001).

    Article  Google Scholar 

  48. Boxhammer, T., Bach, L. T., Czerny, J. & Riebesell, U. Technical Note: Sampling and processing of mesocosm sediment trap material for quantitative biogeochemical analysis. Biogeosciences 13, 2849–2858 (2016).

    Article  Google Scholar 

  49. Bach, L. T. et al. An approach for particle sinking velocity measurements in the 3–400 μm size range and considerations on the effect of temperature on sinking rates. Mar. Biol. 159, 1853–1864 (2012).

    Article  Google Scholar 

Download references

Acknowledgements

We thank all participants of the Bergen Mesocosm Experiment 2011, in particular the KOSMOS team and the staff at the Marine Biological Station, University of Bergen for providing mesocosm logistics, technical assistance and support during sampling. This mesocosm study received financial support in the framework of the coordinated projects SOPRAN (Surface Ocean Processes in the ANthropocene) and BIOACID (Biological Impacts of Ocean ACIDification) funded by the German Ministry for Education and Research (BMBF). We thank S. Meyer for his support with scanning electron microscopy and G. Nondal for carbonate system measurements. A.Larsen received salary from the MINOS project funded by EU-ERC (project no. 250254), A.Larsen and R.G.J.B. from the core project BIOFEEDBACK of the Centre for Climate Dynamics (SKD) within the Bjerknes Centre for Climate Research. R.G.J.B. received support from the EU Framework 7 EuroBASIN (EUROpean Basin-scale Analysis, Synthesis & Integration) project no. 264933. K.G.S. is the recipient of an Australian Research Council Future Fellowship (FT120100384). We thank the captains and crews of RV Håkon Mosby (2011609), RV Alkor (AL376) and RV Heincke (HE360) for support during transport, deployment and recovery of the mesocosm facility.

Author information

Authors and Affiliations

Authors

Contributions

U.R. designed and coordinated the experiment and wrote the manuscript. U.R., L.T.B., J.R.B.M., T.B., J.C., A.Ludwig and K.G.S. carried out the mesocosm experiment. R.G.J.B. measured AT and CT. K.G.S. measured pH and calculated carbonate chemistry. A.Larsen measured E. huxleyi cell abundances. A.Ludwig measured chlorophyll a and inorganic nutrient concentrations. L.T.B. measured particle sinking rates and took scanning electron micrographs. J.R.B.M. determined phytoplankton composition and abundances. T.B. measured sedimentation rates. All authors contributed to the data analysis, discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Ulf Riebesell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2297 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Riebesell, U., Bach, L., Bellerby, R. et al. Competitive fitness of a predominant pelagic calcifier impaired by ocean acidification. Nature Geosci 10, 19–23 (2017). https://doi.org/10.1038/ngeo2854

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2854

This article is cited by

Search

Quick links

Nature Briefing Microbiology

Sign up for the Nature Briefing: Microbiology newsletter — what matters in microbiology research, free to your inbox weekly.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing: Microbiology