Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High stocks of soil organic carbon in the North American Arctic region


The Arctic soil organic-carbon pool is a significant, but poorly constrained, carbon store. The most cited pool size estimates are based on a study that severely undersamples Arctic soils, with only five out of the 48 soils examined actually from the Arctic region. Furthermore, previous measurements have been confined to the top 40 cm of soil. Here, we present 1-m-deep measurements of soil organic carbon obtained at 117 locations in the North American Arctic region. To this dataset we add previously published measurements to generate a total sample size of 139 North American Arctic soils. We show that soil organic-carbon stores are highly dependent on landscape type, being highest in lowland and hilly upland soils, where values average 55.1 and 40.6 kg soil organic carbon m−2 respectively, and lowest in rubbleland and mountain soils, where values average 3.4 and 3.8 kg soil organic carbon m−2 respectively. Extrapolating our measurements using known distributions of landscape types we estimate that the total organic carbon pool in North American Arctic soils, together with the average amount of carbon per unit area, is considerably higher than previously thought. Our estimates of the depth distribution and total amount of organic carbon in North American Arctic soils will form an important basis for studies examining the impact of climate warming on CO2 release in the region.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Study-site locations.
Figure 2: The effect of Arctic latitudinal bioclimate gradient on landscape stores of SOC.


  1. 1

    French, H. M. The Periglacial Environment 2nd edn (Longman, White Plains, 1996).

    Google Scholar 

  2. 2

    Chernov, Y. I. & Matveyeva, N. V. in Ecosystems of the World, Polar and Alpine Tundra (ed. Wielgolaski, F. E.) 361–506 (Elsevier, Oslo, 1997).

    Google Scholar 

  3. 3

    Tarnocai, C. & Smith, C. A. S. Proc. 1st Int. Conf. on Cryopedology 21–42 (Russian Academic of Sciences, Pushchino, 1992).

    Google Scholar 

  4. 4

    Ping, C. L., Bockheim, J. B., Kimble, J. M., Michaelson, G. J. & Walker, D. A. Characteristics of cryogenic soils along a latitudinal transect in Arctic Alaska. J. Geophys. Res. 103, 28917–28928 (1998).

    Article  Google Scholar 

  5. 5

    Walker, D. A. et al. Frost-boil ecosystems: complex interactions between landforms, soils, vegetation, and climate. Permafrost Periglacial Proc. 15, 171–188 (2004).

    Article  Google Scholar 

  6. 6

    Bliss, L. C. & Svoboda, J. Plant communities and plant production in the western Queen Elizabeth Islands. Holarct. Ecol. 7, 325–344 (1984).

    Google Scholar 

  7. 7

    Tedrow, J. C. F. Soil of the Polar Regions (Rutgers Univ. Press, New Brunswick, 1974).

    Google Scholar 

  8. 8

    Michaelson, G. J. & Ping, C. L. Soil organic carbon and CO2 respiration at subzero temperature in soils of arctic Alaska. J. Geophys. Res. 108, 8164 (2003).

    Article  Google Scholar 

  9. 9

    Bockheim, J. B., Walker, D. A., Everett, L. R., Nelson, F. E. & Shikolmanov, N. I. Soils and cryoturbation in moist nonacidic and acidic tundra in the Kuparuk river basin arctic Alaska, USA. Arct. Alp. Res. 30, 166–174 (1998).

    Article  Google Scholar 

  10. 10

    Peterson, R. A. et al. in Permafrost: Proc. Eighth Int. Conf. on Permafrost Vol. 2 (eds Phillips, M., Springman, S. M. & Arenson, L. U.) 885–890 (A. A. Balkema Publishers, Lisse, 2003).

    Google Scholar 

  11. 11

    Ping, C. L. et al. Cryogenesis and soil formation along a bioclimate gradient in Arctic North America. J. Geophys. Res. 113, doi:10.1029/2008JG000744 (2008).

  12. 12

    Davidson, E. A. & Janssens, I. A. Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature 440, 165–173 (2006).

    Article  Google Scholar 

  13. 13

    Jobbagy, E. G. & Jackson, R. B. The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol. Appl. 10, 423–436 (2000).

    Article  Google Scholar 

  14. 14

    Jones, C. et al. Global climate change and soil carbon stocks; predictions from two contrasting models for the turnover of organic carbon in soil. Glob. Change Biol. 11, 154–166 (2005).

    Article  Google Scholar 

  15. 15

    Post, M. W., Emanuel, W. R., Zinke, P. J. & Stangenberger, G. Soil carbon pools and world life zones. Nature 298, 156–159 (1982).

    Article  Google Scholar 

  16. 16

    Sturm, M. et al. The role of winter biological processes in converting arctic tundra to shrubland. Bioscience 55, 17–26 (2005).

    Article  Google Scholar 

  17. 17

    Hobbie, S. E. et al. Controls over carbon storage and turnover in high-latitude soils. Glob. Change Biol. 6, 196–210 (2000).

    Article  Google Scholar 

  18. 18

    Romanovsky, V. E. et al. Proc. Second Russian Conf. on Geocryology 301–314 (Permafrost Science, Moscow, 2001).

    Google Scholar 

  19. 19

    Osterkamp, T. E. & Jorgenson, J. C. Warming of Permafrost in the Arctic National Wildlife Refuge, Alaska. Permafrost Periglacial Proc. 17, 65–69 (2006).

    Article  Google Scholar 

  20. 20

    Walker, D. A. et al. The circumpolar vegetation map. J. Vegetat. Sci. 16, 267–282 (2005).

    Article  Google Scholar 

  21. 21

    Chapin, F. S. III, Miller, P. C., Billings, W. D. & Coyne, P. I. in An Arctic Ecosystem: The Coastal Tundra at Barrow, Alaska (eds Brown, J., Miller, P. C., Tieszen, L. L. & Bunnnell, F. L.) 458–486 (Dowden, Hutchison and Ross, Stroudsburg, 1980).

    Google Scholar 

  22. 22

    Oechel, W. C. & Billings, W. D. in Arctic Ecosystems in a Changing Climate (eds Chapin, F. S. III, Jefferies, R. L., Reynold, J. F., Shaver, G. R. & Svoboda, J.) 139–168 (Academic, San Diego, 1992).

    Book  Google Scholar 

  23. 23

    Stolbovoi, V. Carbon in Russian soils. Clim. Change 55, 131–156 (2002).

    Article  Google Scholar 

  24. 24

    Douglas, L. A. & Tedrow, J. C. F. Transactions of the 7th Int. Congr. on Soil Science Vol. 4, 291–304 (1960).

    Google Scholar 

  25. 25

    Tarnocai, C. in Global Climate Change and Cold Regions Ecosystems (eds Lal, R., Kimble, J. M. & Stewart, B. A.) 91–103 (Advances in Soil Science, Lewis Publishers, Boca Raton, 2000).

    Book  Google Scholar 

  26. 26

    Kimble, J. M. et al. in Proc. Joint Russian–American Seminar on Cryopedology and Global Change (ed. Gilichinsky, D. A.) 277–291 (Russian Acad. of Sci., Inst. of Soil Sci. and Photosynth., Pushchino, 1993).

    Google Scholar 

  27. 27

    Michaelson, G. J., Ping, C. L. & Kimble, J. M. in Assessment Methods for Soil Carbon (eds Lal, R., Kimble, J. M., Follet, R. F. & Stewart, B. A.) (Advances in Soil Science, CRC Lewis Publishers, Boca Raton, 2001).

    Google Scholar 

  28. 28

    Shur, Y., Hinkel, K. & Nelson, F. The transient layer: Implications for geocryology and climate-change science. Permafrost Periglacial Proc. 16, 5–7 (2005).

    Article  Google Scholar 

  29. 29

    Ping, C. L., Michaelson, G. J. & Kimble, J. M. Carbon storage along a latitudinal transect in Alaska. Nutr. Cycling Agroecosyst. 49, 235–242 (1997).

    Article  Google Scholar 

  30. 30

    Washburn, A. L. Geocryology: A Survey of Periglacial Processes and Environments (Wiley, New York, 1980).

    Google Scholar 

  31. 31

    Goryachkin, S. V. et al. in Cryosols: Permafrost-Affected Soils (ed. Kimble, J.) 49–70 (Springer, Berlin, 2004).

    Book  Google Scholar 

  32. 32

    Hoefle, C. M., Ping, C. L. & Kimble, J. M. Properties of permafrost soils on the Northern Seward Peninsula, Northwest Alaska. Soil Sci. Soc. Am. J. 62, 1629–1639 (1998).

    Article  Google Scholar 

Download references


The following National Science Foundation projects contributed to this work: Arctic Transitions in the Land-Atmosphere System, the Flux Study, Biocomplexity of the Arctic System, and Arctic Coastal Transfer. Also significant contributions from the US Department of Agric. Hatch Project and Global Change Initiative, and Hilmar Maier for help with mapping data.

Author information




C.L.P. initiated, conceived and coordinated the paper; G.J.M. contributed to the concept, data analysis and writing; M.T.J., J.M.K., H.E., V.E.R. and D.A.W. contributed to data collection and writing.

Corresponding author

Correspondence to Chien-Lu Ping.

Supplementary information

Supplementary Information

Supplementary table S1 (PDF 401 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ping, CL., Michaelson, G., Jorgenson, M. et al. High stocks of soil organic carbon in the North American Arctic region. Nature Geosci 1, 615–619 (2008).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing