Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Constraints on ocean carbonate chemistry and pCO2 in the Archaean and Palaeoproterozoic

Abstract

One of the great problems in the history of Earth’s climate is how to reconcile evidence for liquid water and habitable climates on early Earth with the Faint Young Sun predicted from stellar evolution models. Possible solutions include a wide range of atmospheric and oceanic chemistries, with large uncertainties in boundary conditions for the evolution and diversification of life and the role of the global carbon cycle in maintaining habitable climates. Increased atmospheric CO2 is a common component of many solutions, but its connection to the carbon chemistry of the ocean remains unknown. Here we present calcium isotope data spanning the period from 2.7 to 1.9 billion years ago from evaporitic sedimentary carbonates that can test this relationship. These data, from the Tumbiana Formation, the Campbellrand Platform and the Pethei Group, exhibit limited variability. Such limited variability occurs in marine environments with a high ratio of calcium to carbonate alkalinity. We are therefore able to rule out soda ocean conditions during this period of Earth history. We further interpret this and existing data to provide empirical constraints for carbonate chemistry of the ancient oceans and for the role of CO2 in compensating for the Faint Young Sun.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Calibration of calcium isotope range to Ca/SO4 in evaporites.
Figure 2: Histograms of calcium isotope data from three Archaean–Palaeoproterozoic sections (grey) and Messinian sulfate data8 from the Mediterranean (black) for comparison.
Figure 3: Equilibrium carbonate chemistry solutions in pCO 2–pH space, divided by the calcium isotope constraint that Ca/ALK >0.75.

References

  1. Sagan, C. & Mullen, G. Earth and Mars: evolution of atmospheres and surface temperatures. Science 177, 52–56 (1972).

    Article  Google Scholar 

  2. Feulner, G. The Faint Young Sun problem. Rev. Geophys. 50, RG2006 (2012).

    Article  Google Scholar 

  3. Walker, J. C. G., Hays, P. B. & Kasting, J. F. A negative feedback mechanism for the long-term stabilization of the Earth’s surface temperature. J. Geophys. Res. 86, 9776–9782 (1981).

    Article  Google Scholar 

  4. Berner, R. A., Lasaga, A. C. & Garrels, R. M. The carbonate–silicate geochemical cycle and its effect on atmospheric carbon dioxide over the past 100 million years. Am. J. Sci. 283, 641–683 (1983).

    Article  Google Scholar 

  5. Kasting, J. F. Early Earth: Faint Young Sun redux. Nature 464, 687–689 (2010).

    Article  Google Scholar 

  6. Kempe, S. & Degens, E. T. An early soda ocean? Chem. Geol. 53, 95–108 (1985).

    Article  Google Scholar 

  7. Grotzinger, J. P. & Kasting, J. F. New constraints on Precambrian ocean composition. J. Geol. 101, 235–243 (1993).

    Article  Google Scholar 

  8. Blättler, C. L. & Higgins, J. A. Calcium isotopes in evaporites record variations in Phanerozoic seawater SO4 and Ca. Geology 42, 711–714 (2014).

    Article  Google Scholar 

  9. Nielsen, L. C. & DePaolo, D. J. Ca isotope fractionation in a high-alkalinity lake system: Mono Lake, California. Geochim. Cosmochim. Acta 118, 276–294 (2013).

    Article  Google Scholar 

  10. Blake, T., Buick, R., Brown, S. & Barley, M. Geochronology of a Late Archaean flood basalt province in the Pilbara Craton, Australia: constraints on basin evolution, volcanic and sedimentary accumulation, and continental drift rates. Precambrian Res. 133, 143–173 (2004).

    Article  Google Scholar 

  11. Awramik, S. M. & Buchheim, H. P. A giant, Late Archean lake system: the Meentheena Member (Tumbiana Formation; Fortescue Group), Western Australia. Precambrian Res. 174, 215–240 (2009).

    Article  Google Scholar 

  12. Sakurai, R., Ito, M., Ueno, Y., Kitajima, K. & Maruyama, S. Facies architecture and sequence-stratigraphic features of the Tumbiana Formation in the Pilbara Craton, northwestern Australia: implications for depositional environments of oxygenic stromatolites during the Late Archean. Precambrian Res. 138, 255–273 (2005).

    Article  Google Scholar 

  13. Sumner, D. Y. & Bowring, S. A. U–Pb geochronologic constraints on deposition of the Campbellrand Subgroup, Transvaal Supergroup, South Africa. Precambrian Res. 79, 25–35 (1996).

    Article  Google Scholar 

  14. Beukes, N. J. Facies relations, depositional environments and diagenesis in a major early Proterozoic stromatolitic carbonate platform to basinal sequence, Campbellrand Subgroup, Transvaal Supergroup, southern Africa. Sediment. Geol. 54, 1–46 (1987).

    Article  Google Scholar 

  15. Sumner, D. Y. & Grotzinger, J. P. Implications for Neoarchaean ocean chemistry from primary carbonate mineralogy of the Campbellrand–Malmani Platform, South Africa. Sedimentology 51, 1273–1299 (2004).

    Article  Google Scholar 

  16. Hoffman, P. in Reefs, Canada and Adjacent Area (eds James, N. P., Geldsetzer, H. H. J. & Tebbull, G. E.) 38–48 (Canadian Society of Petroleum Geologists Memoir 13, 1989).

    Google Scholar 

  17. Hoffman, P., Bell, I., Hildebrand, R. & Thorstad, L. Geology of the Athapuscow aulacogen, east arm of Great Slave Lake, District of Mackenzie. Geol. Surv. Can. Pap. 77-1A, 117–129 (1977).

    Google Scholar 

  18. Sumner, D. Y. & Grotzinger, J. P. Herringbone calcite: petrography and environmental significance. J. Sediment. Res. 66, 419–429 (1996).

    Google Scholar 

  19. Buick, R. The antiquity of oxygenic photosynthesis: evidence from stromatolites in sulphate-deficient Archaean lakes. Science 255, 74–77 (1992).

    Article  Google Scholar 

  20. Eriksson, K., Simpson, E., Master, S. & Henry, G. Neoarchaean (c. 2.58 Ga) halite casts: implications for palaeoceanic chemistry. J. Geol. Soc. 162, 789–799 (2005).

    Article  Google Scholar 

  21. Hotinski, R., Kump, L. & Arthur, M. The effectiveness of the Paleoproterozoic biological pump: a δ13C gradient from platform carbonates of the Pethei Group (Great Slave Lake Supergroup, NWT). Geol. Soc. Am. Bull. 116, 539–554 (2004).

    Article  Google Scholar 

  22. Fantle, M. S. & Tipper, E. T. Calcium isotopes in the global biogeochemical Ca cycle: implications for development of a Ca isotope proxy. Earth Sci. Rev. 129, 148–177 (2014).

    Article  Google Scholar 

  23. Fantle, M. S. & DePaolo, D. J. Ca isotopes in carbonate sediment and pore fluid from ODP Site 807A: the Ca2+(aq)–calcite equilibrium fractionation factor and calcite recrystallization rates in Pleistocene sediments. Geochim. Cosmochim. Acta 71, 2524–2546 (2007).

    Article  Google Scholar 

  24. Blättler, C. L., Henderson, G. M. & Jenkyns, H. C. Explaining the Phanerozoic Ca isotope history of seawater. Geology 40, 843–846 (2012).

    Article  Google Scholar 

  25. DePaolo, D. J. Surface kinetic model for isotopic and trace element fractionation during precipitation of calcite from aqueous solutions. Geochim. Cosmochim. Acta 75, 1039–1056 (2011).

    Article  Google Scholar 

  26. Higgins, J. A., Fischer, W. W. & Schrag, D. P. Oxygenation of the ocean and sediments: consequences for the seafloor carbonate factory. Earth Planet. Sci. Lett. 284, 25–33 (2009).

    Article  Google Scholar 

  27. Kienert, H., Feulner, G. & Petoukhov, V. Faint Young Sun problem more severe due to ice-albedo feedback and higher rotation rate of the early Earth. Geophys. Res. Lett. 39, L23710 (2012).

    Article  Google Scholar 

  28. Charnay, B. et al. Exploring the Faint Young Sun problem and the possible climates of the Archean Earth with a 3-D GCM. J. Geophys. Res. 118, 10414–10431 (2013).

    Google Scholar 

  29. Sheldon, N. D. Precambrian paleosols and atmospheric CO2 levels. Precambrian Res. 147, 148–155 (2006).

    Article  Google Scholar 

  30. Shields, G. & Veizer, J. Precambrian marine carbonate isotope database: version 1.1. Geochem. Geophys. Geosyst. 3, 1–12 (2002).

    Article  Google Scholar 

  31. Blättler, C. L., Miller, N. R. & Higgins, J. A. Mg and Ca isotope signatures of authigenic dolomite in siliceous deep-sea sediments. Earth Planet. Sci. Lett. 419, 32–42 (2015).

    Article  Google Scholar 

  32. Young, E. D., Galy, A. & Nagahara, H. Kinetic and equilibrium mass-dependent isotope fractionation laws in nature and their geochemical and cosmochemical significance. Geochim. Cosmochim. Acta 66, 1095–1104 (2002).

    Article  Google Scholar 

  33. Heuser, A. & Eisenhauer, A. The calcium isotope composition (δ44/40Ca) of NIST SRM 915b and NIST SRM 1486. Geostand. Geoanal. Res. 32, 311–315 (2008).

    Article  Google Scholar 

  34. Hippler, D. et al. Calcium isotopic composition of various reference materials and seawater. Geostand. Newslett. 27, 13–19 (2003).

    Article  Google Scholar 

  35. Jacobson, A. D., Andrews, M. G., Lehn, G. O. & Holmden, C. Silicate versus carbonate weathering in Iceland: new insights from Ca isotopes. Earth Planet. Sci. Lett. 416, 132–142 (2015).

    Article  Google Scholar 

  36. Risacher, F. & Clement, A. A computer program for the simulation of evaporation of natural waters to high concentration. Comput. Geosci. 27, 191–201 (2001).

    Article  Google Scholar 

  37. Hensley, T. M. Calcium Isotopic Variation in Marine Evaporites and Carbonates: Applications to Late Miocene Mediterranean Brine Chemistry and Late Cenozoic Calcium Cycling in the Oceans PhD thesis, Univ. California (2006).

  38. Zeebe, R. E. & Wolf-Gladrow, D. A. CO2 in Seawater: Equilibrium, Kinetics, Isotopes Vol. 65 (Elsevier Oceanography Series, 2001).

    Google Scholar 

  39. Fantle, M. S. & Higgins, J. The effects of diagenesis and dolomitization on Ca and Mg isotopes in marine platform carbonates: implications for the geochemical cycles of Ca and Mg. Geochim. Cosmochim. Acta 142, 458–481 (2014).

    Article  Google Scholar 

  40. Blake, T. S. Cyclic continental mafic tuff and flood basalt volcanism in the Late Archaean Nullagine and Mount Jope Supersequences in the eastern Pilbara, Western Australia. Precambrian Res. 107, 139–177 (2001).

    Article  Google Scholar 

  41. Lipple, S. Definitions of new and revised stratigraphic units of the eastern Pilbara region. Annu. Rep.–West. Aust. Dep. Mines 1974, 98–103 (1975).

    Google Scholar 

  42. Bolhar, R. & Van Kranendonk, M. J. A non-marine depositional setting for the northern Fortescue Group, Pilbara Craton, inferred from trace element geochemistry of stromatolitic carbonates. Precambrian Res. 155, 229–250 (2007).

    Article  Google Scholar 

  43. Thorne, A. & Trendall, A. F. Geology of the Fortescue Group, Pilbara Craton, Western Australia Vol. 144 (Geological Survey of Western Australia, 2001).

    Google Scholar 

  44. Knoll, A. H. & Beukes, N. J. Introduction: initial investigations of a Neoarchean shelf margin-basin transition (Transvaal Supergroup, South Africa). Precambrian Res. 169, 1–14 (2009).

    Article  Google Scholar 

  45. Sumner, D. Y. & Beukes, N. J. Sequence stratigraphic development of the Neoarchean Transvaal carbonate platform, Kaapvaal Craton, South Africa. South Afr. J. Geol. 109, 11–22 (2006).

    Article  Google Scholar 

  46. Truswell, J. & Eriksson, K. Stromatolitic associations and their palaeo-environmental significance: a re-appraisal of a Lower Proterozoic locality from the northern Cape Province, South Africa. Sediment. Geol. 10, 1–23 (1973).

    Article  Google Scholar 

  47. Paris, G., Adkins, J., Sessions, A., Webb, S. & Fischer, W. Neoarchean carbonate-associated sulfate records positive Δ33S anomalies. Science 346, 739–741 (2014).

    Article  Google Scholar 

  48. Sami, T. T. & James, N. P. Peritidal carbonate platform growth and cyclicity in an early Proterozoic foreland basin, Upper Pethei Group, northwest Canada. J. Sediment. Res. 64, 111–131 (1994).

    Google Scholar 

  49. Sami, T. T. & James, N. P. Synsedimentary cements as Paleoproterozoic platform building blocks, Pethei Group, northwestern Canada. J. Sediment. Res. 66, 209–222 (1996).

    Google Scholar 

  50. Hotinski, R. M. Life’s Influence on the Sedimentary Record: The Interplay of Ocean Chemistry, Circulation, and the Biological Pump PhD thesis, Univ. Pennsylvania State (2000).

Download references

Acknowledgements

This work was supported by a grant from the Simons Foundation (SCOL 339006 to C.L.B.). S. A. Maclennan and A. M. Campion aided J.J.K. in collecting Tumbiana samples. D. P. Santiago Ramos and E. A. Lundstrom contributed to laboratory analyses.

Author information

Authors and Affiliations

Authors

Contributions

C.L.B. conceived of the study; L.R.K., W.W.F., G.P. and J.J.K. conducted field work and collected samples; C.L.B. and J.A.H. obtained and analysed the data.

Corresponding author

Correspondence to C. L. Blättler.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1897 kb)

Supplementary Information

Supplementary Information (XLSX 49 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blättler, C., Kump, L., Fischer, W. et al. Constraints on ocean carbonate chemistry and pCO2 in the Archaean and Palaeoproterozoic. Nature Geosci 10, 41–45 (2017). https://doi.org/10.1038/ngeo2844

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/ngeo2844

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing